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Abstract

Microcontroller systems are integral to our daily lives, powering
mission-critical applications such as vehicles, medical devices, and
industrial control systems. Therefore, it is essential to investigate
and outline the challenges encountered in developing secure mi-
crocontroller systems. While previous research has focused solely
on microcontroller firmware analysis to identify and characterize
vulnerabilities, our study uniquely leverages data from the 2023
and 2024 MITRE eCTF team submissions and post-competition
interviews. This approach allows us to dissect the entire lifecycle
of secure microcontroller system development from both technical
and perceptual perspectives, providing deeper insights into how
these vulnerabilities emerge in the first place.

Through the lens of eCTF, we identify fundamental conceptual
and practical challenges in securing microcontroller systems. Con-
ceptually, it is difficult to adapt from a microprocessor system to a
microcontroller system and participants are not wholly aware of
the unique attacks against microcontrollers. Practically, security-
enhancing tools, such as the memory-safe language Rust, lack ade-
quate support on microcontrollers. Additionally, poor-quality en-
tropy sources weaken cryptography and secret generation. Addi-
tionally, our findings articulate specific research, developmental,
and educational deficiencies, leading to targeted recommendations
for researchers, developers, vendors, and educators to enhance the
security of microcontroller systems.
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1 Introduction

A microcontroller (MCU) is a compact, integrated circuit designed
specifically for control tasks within embedded systems and Inter-
net of Things (IoT) devices. Unlike general-purpose processors
found in computers, a microcontroller integrates a processor core
(CPU), memory (RAM and ROM), and peripheral interfaces—such

as timers, Analog-to-Digital Converters (ADC), and communica-
tion modules—onto a single chip. It is commonly used to execute
firmware, which is specialized, often real-time software that man-
ages and controls operations within embedded systems. Compared
to the microprocessors used in smartphones, tablets, and desktops,
microcontrollers operate at lower frequencies and have smaller
memory capacities. Microcontrollers are found in a wide range
of applications, including vehicles, medical devices, and industrial
control systems. To highlight their prevalence, a typical mid-range
automobile contains about 30 microcontrollers [25], and in 2021
alone, global shipments of microcontrollers reached approximately
31.2 billion units [3].

However, designing and implementing secure microcontroller
systems is challenging. They often lack features that are standard
in microprocessor architectures. For example, microcontrollers do
not normally include a Memory Management Unit (MMU), which is
used to implement privilege isolation, fine-grained memory access
control, Address Space Layout Randomization (ASLR) [54], and
many other security features. Additionally, these systems are often
programmed in low-level languages like C and assembly, which lack
safety features and are prone to memory corruption bugs [56–58].

Given their prevalence and use in critical applications, it is impor-
tant to classify the challenges in designing and implementing secure
microcontroller systems. Unfortunately, the closed-source nature
of most embedded and IoT systems presents substantial barriers
to comprehensive analysis. Even procuring real-world firmware
samples is difficult, as highlighted in existing literature [44, 57, 66].
Additionally, we argue that understanding and addressing these
challenges requires more than just technical analysis and solutions;
it also involves grasping developer perceptions.

For this study, we adopted a unique approach by classifying
security challenges in microcontroller systems through the lens of
the MITRE Embedded Capture the Flag (eCTF) competition [15],
an annual, months-long event. Each year, participants are given a
theme, an insecure reference system, and specific microcontrollers
to develop upon. Security is given top priority in the competition.
Therefore, the security-related mistakes observed in eCTF are often
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fundamental, making them highly likely to appear in real-world
development, where security is frequently not as prominently prior-
itized [38, 62]. Indeed, many of our findings on vulnerabilities have
been independently observed in research on real-world firmware
analysis [44, 57].

In contrast to existing studies that typically focus on a single
aspect, such as firmware analysis [44, 57, 66], and lack the capability
to examine the broader perspective, our study takes a more com-
prehensive approach. Through the eCTF lens, we had the unique
opportunity to explore the entire lifecycle of secure microcontroller
system development – from design documents and source code to
binary analysis and developer perceptions. As a result, we not only
confirm the presence of vulnerabilities but also, for the first time,
gain first-hand insights into how these vulnerabilities emerge in
the first place.

Furthermore, the eCTF competition primarily attracts undergrad-
uate students and graduate researchers at the early stages of their
firmware development and security research careers. Therefore,
our insights highlight key areas for enhancing security research
and education for embedded developers. By addressing these gaps,
we aim to equip the embedded systems development and research
community with the knowledge to prevent recurring firmware se-
curity issues and guide future research directions, fostering new
approaches to securing embedded systems.

Our study includes two sources of data: team submissions and
post-competition interviews. To make our submission analysis
broad and thorough, we attempted to identify and understand
security-related mistakes and omissions made by teams. To ac-
complish that, we manually reviewed source code, documentation,
and build tools, and we compiled every submission and examined
relevant disassembly from the output. By finding omissions and
mistakes, we learned about the real challenges that participants
faced. We complemented the analysis with one-on-one interviews
over Zoom. Whereas the source code and documentation may tell
us where mistakes exist, they cannot tell us why they exist. There-
fore, we used the interviews to gain a deeper understanding of
participants’ security acumen and to gauge whether or not they
were aware of their mistakes and omissions. This complementary
approach proved to be a powerful tool for developing deep insights
into which challenges are faced and why.

We break down our findings into two main categories. In the
first category, we detail the conceptual challenges that participants
faced. These challenges are the result of a lack of knowledge or a
misunderstanding. In the second category, we detail the practical
challenges, which exist even when there is abundant knowledge
available. This dichotomy of results is useful because it allows
the problem of securing microcontrollers to be approached from
two sides. Conceptually, researchers, educators, and companies
should explore better ways to bridge the knowledge gaps faced by
embedded system developers. Practically, researchers and vendors
should develop new methodologies and tools that not only identify
and address security shortcomings but also lower the barrier for
their deployment.

Our results highlight three main conceptual challenges and two
main practical challenges in securing microcontroller systems. Con-
ceptually, there is a lack of knowledge about foundational security
principles, it is difficult to adapt from a microprocessor system to a

microcontroller one, and participants are not wholly aware of the
unique attacks against microcontrollers or their defenses. Practi-
cally, tools that naturally enhance security, like the memory-safe
language Rust, lack sufficient support on microcontrollers, and we
additionally find that the lack of high-quality entropy sources leads
to less secure cryptography and secret generation. The contribu-
tions of this paper are as follows:

• We present an approach to studying the challenges in secur-
ing microcontroller systems through the lens of CTF compe-
titions, which provides an opportunity to examine the entire
lifecycle of the microcontroller system development from
both technical and perceptual perspectives;

• By combining in-depth technical analysis with interviews,
we uncovered both experiential and systemic security chal-
lenges, revealing key conceptual and practical difficulties in
securing microcontroller system development;

• We offer actionable recommendations for researchers, de-
velopers, vendors, educators, and tool maintainers to ad-
dress the identified challenges, bridge existing gaps, and
strengthen the security of embedded systems.

2 Background: MITRE eCTF Competition

Competition overview. The eCTF is an annual, semester-long
competition organized by MITRE where teams design, build, and
attack “secure” embedded software for a given microcontroller plat-
form. Each competition has a topic, such as a firmware update
system or an unmanned aerial vehicle package delivery system.
The competition consists of three phases: design/implementation,
handoff, and attack (Figure 1 in Appendix A illustrates the process).
Teams have just over four months to finish them. In the design/im-
plementation phase, teams are tasked with creating “secure” em-
bedded software based on functional and security requirements.
Teams can use the provided reference design as a starting point
or create their own design from scratch. In the handoff phase, the
event organizers verify that the functional requirements are met
for the submitted source code. Flags are then embedded into the
firmware and must be protected by the defense mechanisms em-
ployed by the team. In the attack phase, teams try to capture each
other’s flags by exploiting security weaknesses.

Themes in 2023 and 2024 competitions. In the 2023 eCTF,
teams were assigned the roles of car companies and were tasked
with developing two sets of firmware for cars and key fobs with a
remote keyless entry feature. The firmware of the car and fob runs
on two development boards. The 2024 eCTF focused on an insulin
pump system consisting of one controller and two components: a
blood sugar monitor and a pump actuator, all operating on three
boards and communicating through an I2C bus.

Reference design. In both years, the organizers provided a
reference design written in C as a starting point for competitors.
The reference design fulfills all the functional requirements but has
no security features. For example, all communication is in plaintext,
with no defenses against hardware attacks, and several exploitable
buffer overflow vulnerabilities exist in the provided functions.

Microcontroller platform. The 2023 competition used a TI
TM4C123GXL development board [34] equipped with two 80 MHz
ARM Cortex-M4F microcontrollers. The system has 256 KB of flash
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memory, 32 KB of static random access memory (SRAM), and a 2
KB EEPROM. The 2024 competition used an Analog Devices Inc.
MAX78000FTHR development board [17] equipped with a 100MHz
ARM Cortex-M4 microcontroller and a 60MHz RISC-V co-processor.
The board has 512KB of flash, 128KB of SRAM, and no EEPROM.

Threat model. The threat model in the competition closely
mirrors real-world scenarios involving embedded and IoT devices.
The attacker is presumed to have physical access to the board and
the communication channels between boards, enabling potential
physical tampering besides software-based and network-based at-
tacks. Additionally, the attacker has access to the firmware’s source
code. It is important to note, however, that the source code does
not include any secrets or flags. These elements are generated and
embedded into the protected firmware by the organizer, separate
from the source code made available to the participants.

3 Research Methodology

We adopted a two-pronged approach: analysis of competition sub-
missions and interviews with participants. The analysis and inter-
view only include teams that entered the attack phase, meaning
they had a functionally correct submission reflecting their best
effort to secure it.

3.1 Submission Analysis

We analyzed 47 unique team submissions, with 20 from the 2023
competition and 27 from 2024, referring to individual teams as T1,
T2, and so on. This includes all teams that passed the organizers’
functionality tests and entered the attack phase. The authors of
this study participated separately as teams T1 and T2, competing
independently before later collaborating to summarize and develop
a taxonomy of the findings. The authors’ submissions were part of
the statistical analysis for completeness; however, to avoid potential
bias, no examples or case studies in the paper derive from the
authors’ own submissions. The submissions consisted of source
code, documentation, and build instructions, and we additionally
had access to teams’ posters [23] and presentations [21, 22].

The criteria for submission analysis were informed by our expe-
rience with embedded security and participation in the eCTF over
several years. Through this experience, we have observed common
security practices and where defenses and attacks typically occur
in MCU-based systems, informing the selection of the following
sections for review.

Build tools. We looked at submissions’ Makefiles [26], linker
scripts, and documentation, and compiled each submission. We
recorded their chosen programming language, compiler, optimiza-
tion level, security-related compiler flags and linker script attributes,
and any warnings issued by the compiler during compilation.

Source code and disassembly. We manually inspected teams’
source code and disassembly to learn about the defense mechanisms
they used and whether their behavior matched expectations. In ad-
dition to referencing their documentation, we used git diff to
show changes from the reference files to ensure that we inspected
all the code that was changed. In addition, we examined the dis-
assembly of the compiled firmware to identify potential compiler
optimizations that could negatively impact the system’s security.

Table 1: Interview Participant Demographics.

ID 2023/
2024∗

Major§ Edu
Level†

CTF
Pre-Exp

Pre-Sec
Courses‡

Embed.
Pre-Exp

P1 Rust Rust CS UG 2/3 Very high Yes None
P2 C C CS UG 2/3 Very high Yes None
P3 Rust - CS,CY Master High Yes Limited
P4 C Rust CS Ph.D. High Yes None
P5 - C CS UG 3 None Yes None
P6 - C CY UG 3 Limited Yes Limited
P7 C C CS,MA UG 1/2 Medium No None
P8 - C CS Master None Yes Limited
P9 C - CS UG 2 Very high No Limited
P10 - C CE UG 1 Limited No None
P11 - C CLS UG 3/4 None No Limited
P12 - C CY UG 4 Limited Yes Limited
P13 2018-2021, C CY MS/Ph.D. Very high Yes High
P14 C - CY Ph.D. None No None
P15 - C CE,CY Master Limited Yes Limited
P16 C - CS Ph.D. None Yes Limited
P17 - C CE Master None No High
P18 Rust Rust CS UG 1/2 Medium No Limited
P19 - C CY Master Very high Yes Limited
P20 - C CS UG 3 None No None
P21 - C CE Master None Yes High
P22 - C CS UG 4 Medium Yes Limited
∗: Indicates the programming language used by participant’s team. “-” means
the no attendance. §: CY: Cybersecurity; MA: Math; CE: Computer Engineering;
CLS: Criminology, Law and Society. †: UG 2/3 means the participant was in
undergraduate 2nd and 3rd year during 2023 and 2024 eCTF. ‡: Indicates whether
participant had taken computer security related courses before the eCTF.

We also paid attention to specific keywords related to inline
assembly, random number generation, and timing in the source
code and comments, such as asm volatile, “random”, and “delay”
while we were examining the code. We looked at random number
generation because finding a reliable entropy source on a microcon-
troller can be challenging, and using an unreliable source can make
the system less secure. We investigated timing because adding ran-
dom delays on a system in which an attacker has physical access
can help reduce the efficacy of side-channel attacks and glitching.
Additionally, we used debugging tools to gather runtime output for
any uncertainty from the static analysis.

3.2 Interviews with Participants

We conducted 22 semi-structured interviews with participants,
which included a mix of undergraduate, Master’s, and Ph.D. stu-
dents. Among these, 8 had never taken computer security courses,
and 14 had some experience in developing embedded systems. Ta-
ble 1 provides demographic information of our participants. No
interviewees were from the authors’ teams.

Ethical considerations. We collaborated with the Institutional
Review Boards (IRBs) at each of our institutions to ensure adher-
ence to ethical guidelines, including informed consent, the right
to withdrawal, and the anonymization of Personally Identifiable
Information (PII) to protect participant privacy and confidentiality.
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After a thorough review, both of our IRBs determined that an IRB
exemption was appropriate for this study.

Participant recruitment. We conducted two rounds of partici-
pant recruitment to gather interviewees for our study. Both rounds
focused on attack phase participants who had competed at least
once in the eCTF competitions from 2021 to 2024. The first round of
recruitment took place during the 2024 eCTF award ceremony [60]
in April 2024, while the second round was conducted in December
2024, primarily through email outreach to expand our sample size.
For all interested participants, we provided detailed study informa-
tion and a consent information sheet outlining the study’s purpose,
the voluntary nature of participation, and the measures taken to
ensure confidentiality and data security. We recruited 10 partici-
pates in the first round and 12 in the second round, resulting in a
total of 22 participants.

Interview procedure. The interviews were conducted remotely
via Zoom from May to June 2024 for the first round and from
January to February 2025 for the second round. They varied from
38 to 107 minutes, with an average of 74 minutes. In addition to the
consent process, participants were requested to fill out an online
demographic survey form before the interview to streamline the
interview process, which can be found in Appendix C. This form
collected essential background information, such as their academic
degree, area of study, and prior experience with security courses
and competitions, particularly those relevant to CTF or embedded
systems. Information regarding their role within their team and
contributions during the competition was also gathered.

The main body of the interview was driven by a pre-defined set
of questions detailed in Appendix D, focusing on the challenges par-
ticipants faced, the strategies employed to secure their systems, and
their understanding of security principles and tools. The interview
questions were derived from the submission analysis to examine
recurring issues. Interviews were conducted in a one-to-one semi-
structured way with the option to opt out of any questions. We
compensate each interview participant with a $50 gift card.

Data collection and analysis. Data collection was conducted
through recorded Zoom meetings. The audio recordings were tran-
scribed to text using Otter AI [46] services without PII. We informed
all participants about the privacy practices of Otter AI and obtained
their consent to use the service. To ensure the transcripts’ fidelity,
one of our study members reviewed and proofread each transcript
against the audio recordings, correcting any discrepancies to pre-
serve the semantic integrity of the participant responses.

Following transcription, the data analysis process began with the
development of a preliminary coding scheme. Guided by established
methods [51], three of our study members initially coded a single
transcript independently to foster a diverse range of codes reflecting
the intricacies of the interviews. These initial codes were then
discussed collectively to formulate an agreed-upon codebook.

The initial codebook included categories that encapsulated the
challenges faced by participants, the strategies they employed to
address them, and any unique insights they shared. This codebook
guided the coding of subsequent transcripts, together with all three
study members. Weekly meetings were held to discuss the coding
process, resolve any conflicts, and refine the codebook. This collab-
orative approach negated the need for formal inter-rater reliability
checks, as the codebook evolved through comprehensive consensus

among the coders [43]. The final analysis resulted in a codebook
consisting of 9 themes, 44 sub-themes, and 246 codes.

3.3 Threats to Validity

In assessing the validity of our study, several limitations must be
acknowledged.

First, while the eCTF competition reflects many aspects of real-
world embedded system security challenges, it remains a competi-
tion, and gamification elements such as point maximization may
influence participant behavior in ways that deviate from real-world
scenarios. Even if our findings on vulnerabilities and mistakes align
with those in real-world firmware, we do not claim that our con-
ceptual and technical insights will fully generalize to other devel-
opment environments.

Second, our focus on practical challenges in securing microcon-
troller systems meant that broader organizational aspects of the
competition, such as team collaboration dynamics and the compe-
tition structure, were beyond the scope of our analysis.

Third, the categorization of challenges into conceptual and prac-
tical themes was intended to provide clarity and structure to the
findings. However, some sub-themes may overlap or extend beyond
these categories, potentially introducing nuances not fully captured
in the framework. Additionally, while the study primarily centered
on identified challenges, we included insights that were deemed
beneficial to the community, which may have broadened the scope
beyond the initial framework.

Fourth, the reliance on self-reported data collected through in-
terviews introduces the possibility of social desirability bias. Par-
ticipants may have presented themselves or their teams in a more
favorable light, which could affect the accuracy of the data.

Finally, the sample size, while typical for qualitative research,
was relatively small and limited to participants from the eCTF
competition. This also restricts the generalizability of our findings
to a broader population of microcontroller developers or other
embedded systems professionals.

4 Conceptual Challenges

Conceptual challenges stem from gaps in knowledge or misunder-
standings, and interviews are a highly effective tool for gaining
insights into these issues. Our analysis highlighted three key con-
ceptual challenges in security: security principles, platform adapta-
tion, and hardware attack and defense.

4.1 Security Principles

Our study reveals two significant gaps in security principles, namely
privilege separation and memory wiping, which are basic but effec-
tive mechanisms for securing a system.

4.1.1 Privilege Separation. Privilege separation is a security design
principle that involves dividing a program or system into distinct
components, each with different levels of privilege. Cortex-M mi-
crocontrollers support privilege separation by offering hardware
features such as the Memory Protection Unit (MPU) and distinct
privileged and unprivileged execution modes. The MPU can en-
force read-only and non-executable memory and restrict access to
configurable memory regions depending on execution mode. These
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features must be enabled in code, either manually by the developer
or through adequate support from the operating system.

Submission Analysis: We analyzed teams’ submissions to un-
derstand whether and how they implemented privilege separation
in their designs. We found that even though privilege separation
is a fundamental security concept, no teams in either year utilized
it. This is particularly notable given that this concept is frequently
emphasized in security courses and widely recognized in the secu-
rity community. Moreover, recent studies have focused on making
privilege separation easier to implement, more secure, and more ef-
ficient on microcontrollers. For example, Kage [20], a compiler and
FreeRTOS-based kernel, enhances control-flow protection by iso-
lating the kernel. Similarly, other research, such as Silhouette [68],
ACES [12], and EPOXY [13], target bare-metal systems by lowering
the privilege level of specific code segments.

eCTF vs. real-world firmware: Privilege separation is rarely
implemented in real-world microcontroller devices, appearing in
only 1.78% of firmware samples [57]. Understanding the reasons
behind this is crucial.

Interviews: Through our interviews, we sought to gauge partic-
ipants’ understanding of privilege separation, including whether
they had any familiarity with it. When participants were aware of
privilege separation, we sought to understand why they didn’t use
it in their design.
Many participants showed limited awareness and under-

standing of privilege separation on microcontrollers, often

deterred by its perceived complexity.While a few recognized
the concept of least privilege, the intricacies of implementing it
within the competition’s timeframe or due to unfamiliarity with
the microcontroller’s low-level operations led to the neglect in their
design strategies.

19 out of 22 participants were unaware of the privilege separation
feature in Cortex-M devices. For instance, participant P9 understood
the concept of least privilege but did not know that Cortex-M
supports privilege separation. They mentioned that even if they
had become aware of it, they still unsure if it was necessary for
their design. Similarly, participant P13 acknowledged that privilege
separation could help in certain edge cases but argued that with this
added complexity in design, “you will still potentially lose things.”

For participants like P2, even though they understood the con-
cept of privilege separation, the low level at which microcontrollers
are programmed caused them to overlook it: “[it] didn’t even come
into my mind.” They continued:

“Because I don’t know how the thing is working behind
the scenes, I would just assume the level of privilege
wouldn’t work in my mind.”

Participants assumed that privilege separation is only useful

in an OS-based environment and questioned its relevance

in a bare-metal system. P19 and P11 were both unsure about
the necessity of privilege separation in a bare-metal system. P19
thought that privilege separation would be useful “if you have
different processes and threads, different levels of execution while
you’re designing the system.” Since their system followed a flat,
monolithic design, they did not see the need for privilege separation:

“It wasn’t like we were trying to execute someone else’s
code in an unprivileged context, and protect it from the
unprivileged one. So I don’t think it was really ... useful.”

Participants believed that privilege separation would not

further enhance their system’s security. Participant P12 ac-
knowledged that using both privilege levels is generally a good
security practice but did not identify any specific vulnerabilities in
their design that would have been mitigated by it. P19’s team pri-
oritized avoiding implementation bugs over security mechanisms
like privilege separation, assuming that a bug-free system would
mitigate security risks:

“... the philosophy was, just don’t have any bugs, and
then you don’t have to have any mitigations.”

Similarly, P4 mentioned that while theoretically useful, privilege
separation might not significantly enhance security in environ-
ments where “you have physical access already as the attacker.” They
weighed the attributes of the system against the expected benefit of
privilege separation, and concluded that privilege separation would
not be worth the effort.
Participants who had never heard of privilege separation

tended to endorse it. While privilege separation can enhance
security, its effectiveness is not guaranteed and heavily depends
on careful implementation and system context. Introducing it may
lead to compatibility challenges and potential new vulnerabilities
if not properly managed. Participant P10 said, “it probably would be
a good way of making it [the system] more secure,” and participant
P8 was also inclined to favor it:

“I didn’t know that existed. Yeah, that’s really, really
cool feature. We probably would have sent the team to
go hunt for that if we had known existed.”

Recommendation 1: Researchers should investigate barriers
to privilege separation adoption, develop automated enforcement
tools, and collaborate with educators and vendors to bridge the-
ory and practice. Vendors should enhance their support by pro-
viding comprehensive documentation or demonstration projects
that illustrate privilege separation on their devices. Educators
should emphasize the importance of least privilege in system- and
security-related courses, including specific strategies for imple-
menting privilege separation in embedded systems.

4.1.2 Memory Wiping. Cryptographic secrets or sensitive data,
when stored in memory, pose a security risk if exposed. Their
presence in memory increases vulnerability to unauthorized access
through out-of-bounds reads [1] or cold boot attacks [31]. Memory
wiping is a technique used to minimize the duration that sensitive
information remains in memory. However, memory wiping can fail
if there is an exploitable vulnerability before thewipe, if thememory
wipe is not implemented properly, or if sensitive data is duplicated
in memory. Nevertheless, memory wiping is an important part of
good security hygiene.

Submission Analysis: We analyzed teams’ submissions to un-
derstand whether, where, and how they used memory wiping. Sim-
ilar to privilege separation, memory wiping is foundational to se-
curity and provides significant value compared to the difficulty in
implementing it.
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Teams attempted to use memory wiping in their designs,

but their attempts were partially or fully nullified by the

compiler. T12 used memset three times in one function to zero out
local buffers (Listing 2 in Appendix B). However, the analysis of
their binary revealed that the second memset, which zeroes out the
secret AES key from the stack, is optimized away by the compiler.
Indeed, T12 used memset 10 times in their system, and 5 of them
were optimized away. Similar issues were found in T4 and T10’s
submissions, in which the compiler optimized away 11 out of 30
and 2 out of 5 calls to memset, respectively.
Teams used library functions or custom inline functions to

wipememory, which effectively prevented the compiler from

optimizing away the wipes. To effectively remove sensitive data
from memory, T20 and T15 utilized the wiping function from the
Monocypher library [24] (Listing 3 in Appendix B), which uses the
volatile keyword to prevent compiler optimizations. For teams
using Rust, both T14 and T2 utilized the Rust zeroize library to
prevent optimization of buffer zeroization [19].

T18 implemented an inline function to erase sensitive data on
the stack, as shown in Listing 1. After examining the resulting
firmware, we observed that the compiler either unrolled the calls
to this inline function for small data_len values or replaced them
with memset calls for larger data_len values, while none of the
calls were optimized away.

1 inline __attribute__((__always_inline__)) void
erase_stack_data(uint8_t *start_add, uint32_t data_len) {↩→

2 for(uint32_t i=0; i<data_len; i++) start_add[i]=0;
3 }

Listing 1: The inline function to erase used data on stack

implemented by T18.

Observation 1: Correctly implemented compiler optimizations
cannot preserve the security-related program states that ex-
ceed the scope of semantic functionalities of language specifi-
cations [67]. This means the security-related operations need to
be explicitly controlled and verified by the developer.

Interviews: While analyzing the submissions and firmware was
informative, it did not tell us whether participants were aware that
the compiler could alter their wiping. Therefore, our interviews
sought to gauge participants’ understanding of memory wiping
and their awareness of potential compiler alterations to the code.
Participants thought it was less effective to implement mem-

ory wiping because of the embedded systems’ threat model.

Participant P1 explains that in their threat model, the potential of
an attacker gaining arbitrary memory read capabilities would allow
access to firmware directly since they are all mapped in the same
address space, which will negate the benefits of wiping memory at
the application level. P12 also mentioned that they designed their
system under the assumption that memory could be dumped. In
addition, participant P3 said, “And if they found a way to do that
[read memory content], they could probably do a lot worse than just
reading intermediate memory like that.”
Participants who used the standard library functions to erase

thememory were not aware that the compiler could optimize

them away. Participant P7’s and P11’s teams utilized memset at the

end of functions to erase leftover content. However, they were not
aware that the compiler was optimizing away their memset calls.
As participant P7 realized:

“That’s interesting. I didn’t think that it would optimize
that out. Was that because of the optimization flags?”

Recommendation 2: Developers should use memory-wiping
functions from trusted cryptographic libraries to ensure reliability,
and should routinely verify through disassembly that these secu-
rity measures have not been optimized away.Researchers should
develop more reliable methods and tools that eliminate the need
for developers to perform such manual verification. Compiler

developers should notify users when code that has potential
security implications is optimized away.

4.1.3 Stack Canary. Stack canary is a defensive mechanism de-
signed to detect and mitigate buffer overflow attacks by inserting a
known, random value—referred to as a canary—into the stack frame
just before the return address. At the conclusion of a function, the
integrity of this canary is verified; any modification suggests that a
buffer overflow has occurred, prompting the system to take protec-
tive measures such as halting execution or invoking an exception
handler. On Cortex-M microcontroller systems, the stack canary
feature can be enabled by configuring compiler-level protections.
Modern toolchains, such as GCC, support this mechanism through
options like -fstack-protector or -fstack-protector-strong,
which automatically instrument code with canary checks.

Submission Analysis: We analyzed teams’ submissions to un-
derstand whether and how they implemented stack canaries.
Among the 47 teams, only 2 (4.26%) enabled stack canary pro-

tection by activating the appropriate compiler flags. Notably,
none of these teams provided additional initialization to randomize
the canary value or to customize the error handler. In the absence of
user-supplied initialization, the toolchain library defaults to defin-
ing the canary as a fixed constant. Consequently, if a buffer overflow
corrupts the canary, the default weak-defined handler—typically
designed to halt execution or trigger a system reset—will be in-
voked unless it is explicitly overridden by the user [4, 58]. Despite
this default configuration, incorporating stack canary remains a
significant step towards securing against buffer overflow attacks.

eCTF vs. real-world firmware: Stack canaries are rarely im-
plemented in real-world microcontroller devices, with a presence
rate below 0.2% in large-scale firmware samples [44, 57]. Even
when implemented, Xi et al. [58] found them less effective due to
the lack of canary randomization and prolonged reuse.

Interviews: In our interviews, we aimed to understand why par-
ticipants did not implement stack canaries, as well as their percep-
tions of the potential benefits or limitations of using stack canaries
in microcontroller systems.
Participants who understood but did not implement stack

canaries thought they needed to be enabled by manually

inserting the canary instructions. They were not aware that
the stack canary feature could be enabled by configuring compiler
flags. Participant P19 incorrectly believed that stack canaries are
not typically available on embedded systems, and expressed interest
in implementing them manually:
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“... on embedded systems that this [stack canary] is not a
feature that is usually present ... it would have been fun
to do a little implementation of a stack canary, make
like an LLVM pass that will automatically inject ... some
instructions that will do that for us.”

Similarly, participant P11was unaware that compilers can imple-
ment stack canary protections. They instead focused on securing
buffers to prevent overflows in the first place via manual review.
Participants were not aware the stack canary feature could

be less effective on microcontroller systems. Tan et al. [58]
found that the stack canary feature is less effective on microcon-
troller systems due to the lack of system support for randomizing
the canary value and the prolonged reuse of a single canary value.
Among all participants, only P13 were aware that stack canaries
on embedded systems can sometimes be static, making them vul-
nerable to being leaked through memory dumps or crashes. They
noted that an attacker with sufficient knowledge could determine
the canary value and bypass its protection:

“But realistically, if you have someone who understands
how things work, I mean, you figure out what the stack
canary is, and you just use that [to bypass it].”

Recommendation 3: Researchers should design new stack
canary mechanisms for microcontroller systems. Vendors should
provide options to enable stack canaries when building with their
toolchains.

4.2 Platform Adaptation

System developers must be aware of the platform they’re working
on, especially if they’re moving from one platform to another. For
example, a developer writing secure software for a microcontroller
must be aware that their hardware likely does not include an MMU.

By analyzing teams’ submission and interviewing participants,
we sought to understand the conceptual challenges that developers
face when moving from microprocessor systems to microcontroller
systems. Our analysis revealed two key areas that are related to
memory access control in which developers had challenges to adapt:
non-executable stack and relocation read-only.

4.2.1 Non-executable Stack. Making the stack non-executable can
effectively thwart stack-based code injection attacks [45]. Inmodern
microprocessor systems (e.g., Cortex-A or x86/64), ensuring that
the stack of applications is non-executable involves two major steps.
First, during the compilation and linking stage, developers specify
that they want the stack to be non-executable by using specific
linking options. The latest versions of GCC and LLVM default to
using a non-executable stack by setting attributes in the program
header of the ELF binary [42]. Second, when the program is loaded
into memory, the loader reads the ELF’s program header and asks
the operating system to enforce non-executability by configuring
the MMU page settings.

However, the MCU system does not load the program during
runtime; instead, the raw binary, without the program header, even-
tually gets copied out of the ELF binary and flashed to the MCU’s
storage media. Thus, the memory attributes in the ELF’s program
header are already lost during this process. As a result, teams that

aimed to enforce non-executability had to devise their own tech-
niques, utilizing the MPU to protect access to stack memory.

Submission Analysis: We sought to understand whether and
how they attempted to make the stack non-executable without an
operating system. We believe that this knowledge is crucial because
preventing the execution of data on the stack is another hugely
effective foundational security concept.
Only four submissions successfully implemented stack non-

executability. Four submissions out of 47 across both years manu-
ally configured the MPU during the firmware initialization process
to make the stack non-executable. This entailed enabling the MPU,
configuring the memory region for the stack with the eXecute
Never (XN) attribute set, and subsequently enabling the region.
A few teams tried to enable the non-executable stack but

failed to do so. Two other teams attempted to make the stack non-
executable, but they only completed the first step ofmarking the ELF
header and missed the second step of honoring the request during
the firmware initialization process. For instance, T18 modified the
attribute of the whole SRAM to non-executable in their linker script
(Listing 4 in Appendix B). T13 also explicitly specified the linker
option -z noexecstack during the compilation of the ELF binary.

eCTF vs. real-world firmware: The real-world usage of MPU
for memory protection is also minimal, with presence rates less
than 2% in large-scale firmware samples [44, 57]. Understanding
the reasons behind this is crucial.

Interviews: Through our interviews, we sought to understand
why participants didn’t attempt to implement non-executability,
and if they did, whether they knew that their implementation did
not work and why it did not work.
More than half of the participants (12/22) were unaware of

the advantages of a non-executable stack and how to imple-

ment it. Participant P1 was not aware of the non-executable stack
feature during the competition. As their team used Rust, they were
also unsure “if using the Rust compiler specifically for an embed-
ded target will also set those memory protection flags correctly.” P2
mentioned that they were “only looking at library specific flags”
when implementing the crypto, and similarly P12 admitted that
“the compiler was a potential that we left on the table.”

P7 noticed some teams configured the memory pages in C code
and then “setting the bits” on them after the competition, but they
did not find out the specific reasons for doing so.
Most participants (21/22) thought adding the noexecstack
compiler flag or modifying the attributes in the linker script

would effectively make the stack non-executable on a micro-

controller system. Participant P5 believed that the non-executable
stack flag is a standard method to increase security against buffer
overflow exploits in microcontroller environments:

“Yeah, so I think like, non executable stack is something
very basic ... very much like standard and a lot more
protective in terms of making it difficult to [exploit].”

Participant P4 thought it would be a good but incomplete defense
when compiling embedded binary with the non-executable stack:

“So it’s like they’re definitely, obviously it’s like not a
complete solution. But ... I would imagine that would
still be useful as well in an embedded scenario.”
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Participant P9 endorsed the idea of enabling the non-executable
stack flag and thought it may work similarly to a traditional micro-
processor system:

“It enables the memory protections, I think, for that
region of virtual memory? As to how I work on the
microcontroller, probably similar to ... a normal PC.”

Only participant P3 acknowledged that merely setting the rel-
evant bits in the ELF files will not make the RAM region non-
executable on a microcontroller system.

Recommendation 4: Researchers should explore compiler or
linker extensions that automatically enforce memory attributes in
microcontroller systems. Vendors might consider preserving the
necessary attributes to the raw binary that is flashed to the device
in their build toolchains, which enables firmware to read them
during initialization to configure corresponding permissions.

4.2.2 Relocation Read-only (RELRO). In dynamically linked ELF
binaries, the Global Offset Table (GOT) stores function pointers
that are resolved during dynamic linking. Overwriting these func-
tion pointers has been an effective attack vector for control-flow
hijacking. RELRO [55] is a binary hardening technique to mark
GOT and related sections as read-only in the ELF files to mitigate
control-flow hijacking. Similarly to enforcing the non-executable
stack, it’s imperative for both the loader and the operating system
to recognize and adhere to this marking, configuring the memory
settings accordingly. However, microcontroller firmware is usually
statically linked, which makes the presence of GOT and related
sections uncommon, rendering RELRO ineffective for such systems.

Submission Analysis: T13 enabled the -z relro linker flag in
their Makefile. However, since their firmware is statically linked,
this flag has no effect. Unfortunately, we did not have a chance
to interview them about their choice. Note that the compiler also
does not give warnings when potential invalid options for a specific
architecture have been enabled.

Recommendation 5: Compiler developers should warn users
when they enable options that may not work on the target archi-
tecture. They should also refer users to the documentation for
their architecture to ensure their security measures will behave
as expected.

4.3 Hardware Attack and Defense

Compared to microprocessor systems, MCU-based embedded de-
vices are more susceptible to hardware attacks like tampers in
physical communication channel, side-channel analysis, and fault
injections due to the physical accessibility and simpler circuit design.
We refer them as embedded-prone attacks. As a result, developers
must practice good security hygiene while additionally accounting
for these unique threats.

Submission Analysis: We analyzed teams’ submissions to un-
derstand whether and how defenses were implemented against
embedded-prone attacks. We are careful to not include defenses
against attacks that are equally practicable on the microprocessor
system as they were not the focus of this study.

Across both years, only 17/47 teams (36.17%) implemented

any defense against embedded-prone attacks. Rather, the ma-
jority of competitors focused on securing their communication and
defending against common software vulnerabilities. For example,
most competitors were aware of buffer overflow and brute-force
vulnerabilities, and chose to avoid using unsafe functions like gets
as a result.
Of the teams that implemented any defenses, asynchronous

physical communication channel tampering was the least

frequently defended against, at 7/17 (41.18%). Asynchronous
means the attacker can intercept the communication for offline
tampering for as long as they want. For example, T15 designed its
communication protocol to require timely response from the other
side. They implemented a timeout mechanism such that messages
must have been received within a certain time frame to be accepted
as valid. If attackers want to manipulate the message in the physical
channel, they need to modify the intercepted messages in a tiny
time window, which might not be feasible.
Of the teams that implemented any defenses, side-channel

analysis was the most frequently defended against, at 13/17

(76.47%). These defenses effectively prevent timing side-channel
analysis on password comparison by completing the process in
constant time regardless of the input. For example, T7 used the
timing_safe_strcmp function from the bCrypt [28] library, while
teams that did not implement a defense used the strcmp() or
memcmp() library functions, which do not operate in constant-time.
Other teams, such as T18, implemented their own constant-time
comparison functions (Listing 5 in Appendix B).
Of the teams that implemented any defenses, fault injection

attacks were defended against by 9/17 teams (52.94%). Mit-
igation inserts random delays to make it harder for an attacker
to inject a fault at the correct time. T15 implemented the random
delay macro for delaying 1 to 255 CPU cycles and check for possible
glitches at the end (Listing 6 in Appendix B). Using the macro can
also avoid potential unwanted compiler optimizations [52].

Interviews: We sought to gauge participants’ knowledge of
the unique attack surface in the microcontroller environment and
understand why they either did not implement defenses against
embedded-prone attacks or did not implement all possible defenses.
Participants acknowledged the larger attack surface of em-

bedded systems due to physical accessibility. As mentioned by
participant P4, “we had to assume that attackers had physical access
with the board,” which influenced their defensive strategies. They
need to additionally consider physical attacks, such as side-channel,
and assume the attacker can do “a lot of things that cryptography
alone isn’t really equipped to handle.”

P11 believed that the embedded systems are simpler but easier
to attack because “it does not have an OS, and everything is pretty
much streamlined, so you do have a lot of good regularities in that
systems.” In addition, they are more susceptible to physical attacks
as “you are exposing to the hardware immediately.”
Participants gave less priority to defending against hardware

attacks than software vulnerabilities. Participant P8 initially
aimed to secure the design against side-channel analysis. However,
due to their knowledge gap in the side-channel analysis, and “we
realized that the number of people who actually know how to run these
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attacks is actually quite small,” they decided to focus on preventing
buffer overflows instead.

Participant P9 admitted that the fault injection attacks were
“more difficult compared to some of the low hanging fruit,” and they
lacked awareness of straightforward protective strategies. As a
result, they instead focused on defending attacks that they thought
“would be easier to execute.”

P13 admitted that it is “technically easier” to conduct hardware
attacks on embedded devices, and attributed the lower priority of
hardware defenses to the knowledge gap among developers:

“It’s harder to do hardware stuff because you’re missing
the knowledge. It’s easier to do software because more
people ... understand how software attacks work.”

Participant P19 felt that software security is generally easier
to implement and provides higher defensive value compared to
hardware-based protections:

“The potential upsides of defending from a software
perspective are both higher and cheaper for ... developer
or manufacturer than on the hardware side.”

Observation 2: The knowledge gap in hardware attacks was the
dominant factor that prevents participants from implementing
effective defenses.
Even if participants were aware of embedded-prone hard-

ware attacks, they had challenges implementing defenses.

Participant P2 discussed the challenges of designing persistent
memory on microcontrollers due to the paged flash access:

“We had to find pages inmemory, that we’re not going to
overwrite anything else that was useful, which usually
in general-purpose, that is done for you ... It’s already
there in the logistics of the system.”

Participant P15 admitted that they “don’t know if there is a defend
mechanism against glitching” and thus skipped the defense. Simi-
larly, P8 acknowledged the theoretical possibility of fault injection
attacks but lacked the resources and tools to effectively explore and
mitigate such threats:

“For the CS guys, we had no clue this [fault injection]
was a thing. And even for the embedded systems [CE]
guys, they were like, we know this theoretically could
be done, but we don’t quite know how to do it. And we
don’t know how to prevent against it.”

Additionally, besides being harder to execute, P18 believed that
the hardware attacks are “more difficult to mitigate” than software
attacks. They also noted that compilers provide little to no protec-
tion against hardware attacks and may even “work against you” by
introducing unintended security weaknesses.

Recommendation 6: Researchers should develop frameworks
and tools that enable systematic testing of hardware attack miti-
gations on embedded systems (e.g., reference implementations for
side-channel and glitching defenses). They should also investigate
compiler-level or build-system features to integrate hardware-
focused protections more seamlessly. Vendors can improve hard-
ware or SDK support for logging anomalies and detecting tamper-
ing events at runtime. Educators should incorporate hardware
attack scenarios into security curricula. Hands-on lab exercises

and simplified testing tools would help students gain the skills
needed to implement or evaluate hardware-level defenses.

5 Practical Challenges

Practical challenges are those faced even when there is an abun-
dance of information. Based on our analysis, two practical chal-
lenges emerged as particularly significant: embedded Rust adaption
and sources of entropy.

5.1 Memory Safe Language

Microcontroller systems require permissive access to memory to
properly and efficiently interface with hardware and peripherals.
Accordingly, they are usually programmed in C, but the difficulty of
safely and correctly accessing memory often leads to vulnerabilities.

Rust, a memory-safe language, aims to eliminate or reduce mem-
ory corruption vulnerabilities with compile-time safety checks.
Because Rust is checked for issues at compile time, it maintains a
speed similar to that of C. Unfortunately, the unique requirements
of microcontroller systems present practical challenges to adopting
Rust, which is shown in our interviews and submission analysis.

Submission Analysis: In 2023, 5 out of 20 teams made into the
attack phase used Rust as their primary programming language,
whereas in 2024, only 2 out of 27 teams adopted Rust in their design.
This decrease is attributed to the fact that in 2024, the vendor-
provided C Software Development Kit (SDK) was considerably
larger in size compared to 2023. Since most teams adopting Rust
still needed to compile the vendor’s C SDK with their Rust code,
this resulted in an excessive binary size that could not fit into the
flash memory, leading to fewer teams adopting Rust that year.

Interviews: We prepared interview questions (Appendix D.3) to
understand participants’ views on using a memory-safe language
within the microcontroller environment and to learn about their
attitudes and practices regarding code safety.

5.1.1 Perspectives and Hesitations About Employing Rust. While
most participants did not choose Rust accounting for the overall
team familiarities, several participants described practical factors
that limited or dissuaded them from incorporating Rust.

Observation 3: Besides familiarity, participants decided against
Rust for reasons spanning the lack of direct vendor support, insuf-
ficient library support for microcontroller systems, and the steep
learning curve. Participants who did not use Rust also expressed
misconceptions about its memory safety features.

Participants cited the lack of direct vendor support and insuf-

ficient library support for microcontroller systems as major

obstacles to switching to Rust. For both years, the SDK for inter-
facing with the hardware and peripherals was only provided in C.
To use Rust, teams had to write their own implementations of SDK
functions or use Rust-to-C bindings to interact with hardware.

P5, for instance, realized that the “[vendor] library support is not
present in Rust,” which made hardware interactions, such as I2C or
flash memory, exceedingly difficult without rewriting entire driver
layers from scratch.

Participant P13’s team also focused on language compatibility
with the target architecture, explaining that having a functional
compiler and toolchain was a deciding factor for language choice:
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“Okay, is there a compiler for that particular architec-
ture which allows us to compile binary? And the other
thing was, like, you don’t need only a compiler, but you
need also, like the whole toolchain.”

They believed Rust was not widely adopted in commercial em-
bedded development due to the extra effort required in the toolchain:

“I have something like 800 [market] embedded IoT de-
vices ... No one in their right mind would use Rust.”

The steep learning curve was also a major hurdle for those

who hesitated to adopt Rust. P4 recognized Rust’s learning curve
as a significant time investment, especially nuances like handling
unsafe code which were unfamiliar to those experienced in C/C++:

“... especially working with unsafe code and stuff, there’s
a lot of ... weird idiosyncrasies with Rust that I think
what it slowed us down in the development.”

P18 found Rust more complex than C due to features like the
ownership model, which “people have to understand” to take its full
advantage. Participant P9 acknowledged the advantages of Rust
in terms of security and robustness but expressed concerns as it
“would be more difficult to develop rapidly.”
Participants who had not actively used Rust sometimes saw

it as completely eliminating memory vulnerabilities. Five par-
ticipants who did not use Rust expressed misconceptions about its
memory safety features on embedded systems. Participant P10 said
that in their understanding, Rust takes care of memory safety; it
is “already memory safe” compared to other languages. P12 also
thought that Rust by nature “doesn’t let you write the function if
it’s not memory safe, or it kind of optimizes it out if it’s not memory
safe.” While it is generally true that Rust enforces strong safety
guarantees, these participants did not realize the challenges posed
by unsafe code blocks or low-level memory interactions, which
are discussed in the next section.

Recommendation 7: Educators should emphasize that, while
Rust offers memory safety, its application in microcontroller sys-
tems may still pose challenges, particularly when interfacing with
existing C libraries and requiring the use of unsafe blocks.

5.1.2 Adoption Experiences and Challenges Among Rust Users. In
contrast, some participants did integrate Rust into their designs
and encountered a different set of hurdles.

Observation 4: Participants used Rust mainly faced challenges
in compiling Rust without the standard library, efficiently imple-
menting the hardware abstraction layer, and managing unsafe
operations properly.

Participants encountered challenges when compiling Rust

without the standard library on the embedded device. The
Rust standard library provides abstractions, types, operations, and
other quality-of-life utilities for developing in Rust [50]. However,
it is often necessary to use Rust without the standard environment
in situations where an OS is not available.

P3 told us that transitioning to using Rust in a no_std [7] en-
vironment posed a unique set of challenges distinct from general-
purpose programming on the microprocessor systems. They had to
ensure that any dependencies they wanted to use were compatible
with a no_std environment, which narrowed the range of usable

libraries. Besides compatibility, participant P4 also noted that any
inclusion of the Rust standard library risked bloating the binary.
Participants highlighted the challenges in implementing a

secure Hardware Abstraction Layer (HAL). A common prac-
tice in embedded development is to perform hardware interactions
through an intermediate HAL, which hides the low-level imple-
mentation details from the rest of the system. The HAL used for
the reference system was provided as an SDK that offered C in-
terfaces to various components of the microcontroller used in the
competition. However, a similar HAL was not available for Rust.

Participant P1 told us that in 2023, they created many Rust bind-
ings to the original C SDK, which was compiled with their Rust
code that only implements the high-level protocol:

“... if you look at our 2023 codebase, it’s mostly ... written
in C because we just collect the entire C library for the
Tiva [C SDK]. That’s instruments driver, and then we
compile that in with our like, small Rust code. ”

In the 2024 event, P1’s team avoided compiling the vendor’s
large C SDK alongside their Rust code (which inflated firmware
size), and instead wrote a minimal HAL from scratch:

“... it lets us have a more holistic view of the device
... It lets us get more Rust experience and make sure
that we’re also avoiding any bugs that could potentially
occur in a C library.”

In order to develop the HAL that directly interacts with pe-
ripherals, P1’s team utilized the svd2rust [49] tool to automatically
generate Rust structures from CMSIS-SVD [5] files, which describes
the memory-mapped registers of peripherals and is available in the
vendor-provided SDKs. This automation reduced the need for man-
ual volatile reads/writes by providing pre-generated bindings for
hardware interactions. After this, with the Rust peripheral access
crate [8], theywere able to abstract the direct register manipulations
into more manageable function calls in HAL.

Observation 5: Automated conversion of hardware descriptor
files into Rust structures can accelerate embedded HAL develop-
ment, but its fidelity and security require further research.

P1 also mentioned that they encountered inconsistencies be-
tween the vendor-provided CMSIS-SVD files and the device user
manual. They believe “it’s probably because they [the vendor] took
some previous SVD file copied over and change.”
Teams also struggled with effectively compartmentalizing

unsafe operations. It is possible to call C functions from Rust
code, but only within an unsafe block. Unsafe blocks in Rust allow
for certain operations that the compiler cannot guarantee to be safe,
such as dereferencing raw pointers or calling external C code [9].
This bypasses the rigorous safety checks normally enforced by
Rust, potentially leading to security vulnerabilities such as buffer
overflows or access violations if not carefully managed.

Some teams, such as T11 led by P3, used unsafe blocks exten-
sively for calling C SDK functions, primarily due to their incremen-
tal development model, which allowed for parts of the system to be
gradually ported to Rust while continuously testing and validating
functionality. They explained:

“... the teams that chose to rewrite everything in scratch
from Rust would have had an intermediate state, your



“We just did not have that on the embedded system”:
Insights and Challenges for Securing Microcontroller Systems from the Embedded CTF Competitions Conference, Date, Location

part of the code was ported over to Rust, part of it was
in C, but they were separate. And there was no way to
know if it worked until the Rust rewrite was done.”

In contrast, P18’s team aimed to confine unsafe code to low-
level crates that interact with hardware, while they tired not to use
unsafe code “especially like anywhere in our logic.”

Recommendation 8: Researchers might further explore ways
to automate or reduce unsafe code by refining Rust-based ab-
stractions, improving static analysis, and clarifying best practices
for HAL construction. Vendors should consider enhancing their
support for Rust in embedded systems by providing full Rust SDKs
or Rust-to-C bindings for their existing C libraries. Additionally,
the hardware descriptor files should be made accurately to assist
developers in implementing Rust-based HAL effectively.

5.2 Entropy Sources

Like microprocessor systems, microcontrollers use Pseudo-Random
Number Generators (PRNGs) to generate cryptographic secrets.
PRNGs take a seed as an input to deterministically generate an out-
put. Since the output is deterministic, the input must be comprised
of harvested randomness. However, there are fewer high-quality
sources of entropy on a microcontroller system than a microproces-
sor system, complicating the generation of pseudo-randomnumbers
and impacting the robustness of cryptographic operations [33].

Submission Analysis: We analyzed teams’ submissions to un-
derstand how they used randomness in their designs, their source(s)
of entropy, and shortcomings that might have arisen from their
combination of the two.
Teams were not able tomaintain unpredictability in their use

of randomness. In 2023, 1 out of 20 teams neglected the inclusion
of entropy in their cryptographic design, while 5 teams relied on
hard-coded seeds or entropy generated at build time. Although some
teams updated the seed with each use of the PRNG, the ability of
attackers to reset the seed by re-flashing the firmware allowed them
to predict the PRNG’s output. In 2024, 18 out of 27 teams utilized the
vendor-provided True Random Number Generator (TRNG), while
5 teams did not include randomness in their design.

In addition to hard-coded seeds, some teams opted for entropy
sources such as the SysTick counter, built-in timers, or CPU cycle
counters. While these sources represent an improvement over static
seeds, using them without other sources still introduces vulnerabil-
ities. Attackers could execute the firmware and repeatedly perform
specific operations, cataloging PRNG outputs to construct a com-
prehensive database. A sufficiently extensive database increases
the likelihood that the output of a future operation, if conducted
at a precise time, could coincide with a database entry, thereby
facilitating replay attacks.
Teams utilized different approaches to overcome the chal-

lenge and obtain sufficient entropy. Addressing the challenge of
limited randomness and entropy in microcontroller systems, a vi-
able strategy involves aggregating multiple samples and, when fea-
sible, incorporating various sources of entropy [29]. This approach
mixes random bits across the collected data, thereby maximizing
the entropy of randomness.

Several teams adopted this technique by consolidating entropy
samples into a pool and subsequently employing a hashing algo-
rithm to derive their seed, mirroring the methodology employed
by the Linux PRNG algorithm [30]. Teams such as T14 and T4 ex-
emplified this practice, while T15 adopted an alternative approach,
hashing values sampled from an internal temperature sensor and
combining them through XOR operations. Both strategies align
with NIST recommendations for preserving inputted randomness
and mitigating risks associated with insufficient randomness [35].

Observation 6: Although microcontroller systems usually have
limited entropy sources, combining multiple available sources can
effectively improve the robustness of the generated randomness.

Interviews: We sought to understand the challenges that partic-
ipants faced with regard to finding and using a reliable source of
entropy. We asked participants about why they chose their entropy
source and how they tested its effectiveness.
Participants faced challenges in implementing RNG on the

microcontroller system due to limited entropy sources. Par-
ticipant P4 admitted to having very low confidence in their RNG
implementation, primarily due to the lack of appropriate entropy
sources and knowledge gaps in implementing RNG on a microcon-
troller system:

“... most implementations of RNG that we could find
relied on OS level calls to like urandom ... and we just
did not have that on the embedded system.”

They struggled with identifying reliable entropy sources, such
as SRAM at boot time or temperature sensors, and had difficulties
in ensuring adequate entropy was sampled for true randomness:

“We didn’t really know how to ... get solid entropy
sources to seed the random number generator to make
sure that it’s random.”

Participants questioned the reliability of the vendor-provided

TRNG but did not conduct rigorous tests. In 2024, the devel-
opment board was equipped with a vendor-provided TRNG im-
plementation, which could be accessed through the SDK function
calls. However, the board’s documentation only indicated that the
TRNG gathered randomness from various sources on the board,
without providing any details about the reliability and quality of
the generated randomness [18].

P1 chose a PRNG seeded by both TRNG and the CPU clock
because “we were not totally sure howmuch we could trust the TRNG.”
Eventually, due to the TRNG’s slow performance and the potential
for attacks against hardware TRNGs, they decided to mix multiple
entropy sources to seed a PRNG.

Participant P2 also didn’t trust the TRNG initially and tried to
confirm it with the vendor to understand how it was implemented.
However, the vendor “didn’t tell us everything,” and they had to rely
on the vendor’s assurances.

Most participants did not rigorously test the vendor-provided
TRNG; instead, they relied on the vendor’s assurances. According
to P2, since the vendor did not disclose sufficient information and
because of the competition schedule, they chose to trust the ven-
dor’s certainty and did not perform a robustness test. Similarly, 18
out of 22 participants admitted to performing only rudimentary
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tests, such as checking the first few outputs to ensure they appeared
random, as mentioned by P7:

“We did not test. We just ... printed it ten times and until:
hey it’s different each time. So we have it good enough.”

To further assess the RNG’s robustness, several teams con-

ducted ad-hoc tests. However, they struggled to interpret the

results, as many tests yielded inconclusive outcomes. Partici-
pant P11 and P19’s teams experimented the board with different en-
vironmental conditions, such as by freezing the board, “to see if the
TRNG would break or produce predictable values,” as P19 explained.
They also mentioned a basic but effective test they conducted to
ensure the TRNG’s reliability:

“If you print out an image of the [output] of the TRNG,
it becomes quite obvious ... sometimes you can see boxes
or marks where there is some repeatable pattern.”

Others, like P11, applied “cryptographic distinguishers to see if
it’s random or not” and observed no obvious patterns. P5’s team
“generated around 2 million random numbers from the TRNG” for pre-
liminary statistical checks. They all mentioned that their statistical
approaches were taken from existing cryptographic research.

P4 stated that they utilized NIST’s suit of statistical randomness
tests [48] to evaluate the RNG in both years, gathering around a
million samples for testing. They encountered difficulties in inter-
preting the test results, with many tests returning inconclusive
outcomes that did not definitively indicate the RNG’s reliability.
In 2024, they also employed the dieharder test suite [10], which
is more comprehensive but also more demanding in terms of the
sample size required for conclusive results. P4 admitted:

“We were more so trusting that the proprietary non-
disclosure TRNG was cryptographically secure ... the
test was more so just a very quick sanity check to make
sure it’s not just egregiously bad.”

Recommendation 9: Developers should diversify their en-
tropy sources and rigorously test RNG implementations. Vendors
should clearly delineate and recommend available entropy sources
for specific boards, especially when a TRNG is absent, and provide
detailed documentation on the implementation and performance
of provided TRNGs.

6 Summary and Future Work

Summary of our findings. From our observations, several signifi-
cant trends related to embedded development and the effectiveness
of our security curriculum have emerged.

First, the responsibility for writing secure code largely falls on
developers. Although modern languages and recent research offer
promising advancements, implementing these technologies poses
both conceptual and practical challenges. The lack of vendor and
library support further hinders the adoption of new technologies,
often leaving embedded developers to either create their own solu-
tions or abandon the problem entirely.

Second, MCU developers face a unique set of demands compared
to their counterparts working on microprocessor systems. They
need an in-depth understanding of their specific platform, includ-
ing how their code interacts with the compiler and underlying
hardware. This requires not only proficiency in application code

but also a thorough knowledge of hardware features and how to
use them to enforce security boundaries. The often opaque and
counter-intuitive nature of compiler operations adds to the com-
plexity, placing a substantial burden on developers as they navigate
multiple layers of the software/hardware stack.

Lastly, current curricula, particularly those for CS majors, fall
short in preparing students for the specific challenges of embedded
development. Our study participants were notably puzzled by how
to defend against physical threats, highlighting a significant gap in
their education regarding practical security measures for embedded
systems.

Future work. Overall, the demands placed on MCU developers
are substantial, requiring a unique combination of skills that span
software development, computer engineering, and security best
practices. As the ubiquity, importance, and connectivity of mi-
crocontroller systems continue to grow, there is an increasing
need for education, tools, and frameworks that can assist develop-
ers in navigating these challenges and reducing the likelihood of
security vulnerabilities in embedded code.

7 Related Work

CTF research and user study. Previous papers on CTF experi-
ences [32, 36, 61, 63, 64] have a primary focus on educational pur-
poses. Vigna et al. [63] introduced a framework built on a decade’s
worth of experience in organizing the international Capture the
Flag (iCTF) [53], which was further developed to offer a CTF-as-
a-Service solution [61]. Similarly, Vykopal et al. [64] emphasized
the advantages of using CTF challenges as hands-on assignments
to enhance students’ skills. In addition to the educational benefits,
researchers have also examined the challenges and obstacles associ-
ated with the CTF model itself. Such research sheds light on strate-
gies for addressing various challenges and ensuring a successful
CTF experience for participants. Crispin et al. [16] described their
experience in the Defcon CTF. Chung et al. [11] discussed methods
to overcome the pitfalls and hurdles commonly encountered in or-
ganizing CTFs. Fulton et al. [27] conducted user studies with senior
software developers who have worked with Rust to understand
the benefits and challenges of using Rust in their projects. They
identified drawbacks including the steep learning curve, limited
library support, and concerns about the ability to hire additional
Rust developers in the future.

Unlike the existing literature, our study uniquely combines sub-
mission analysis with participant interviews to provide a dual-
perspective understanding of both the technical and human factors
influencing security practices.

Securing microcontroller systems. Many technical solutions
have been proposed to protect microcontroller systems against
attacks. These include privilege separation and compartmentaliza-
tion [6, 12, 14, 37], control-flow integrity (CFI) techniques [2, 20, 41,
58, 59, 65, 68], randomization methods [40, 54], Return-Oriented
Programming (ROP) gadget removal techniques [39], etc. For a
comprehensive review of the research on defensive approaches,
please refer to Tan et al. [57]. For real-world firmware analysis,
FirmXRay [66], Nino et al. [44], and Tan et al. [57] all presented
datasets of microcontroller firmware for IoT devices. These stud-
ies conducted static analyses to assess the security properties of
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these datasets. Even though the results of these works reveal many
concerning issues in real-world firmware, none of them studies the
perceptual challenges associated with adopting security mitigation
for microcontroller systems.

Unlike previous purely technical studies, we examine the primary
challenges associated with designing and implementing security
mitigation for microcontroller systems from both technical and
perceptual perspectives.

8 Conclusion

In this study, we investigated the security practices and challenges
faced by participants in the 2023 and 2024 MITRE eCTF competi-
tions. Through a detailed analysis of competition submissions and
interviews with participants, we uncovered both conceptual and
practical security gaps in the development of embedded systems.
Our findings indicate that despite the participants’ familiarity with
basic security concepts, there is a significant disconnect when ap-
plying these principles to embedded systems, compounded by a
lack of adequate support for robust, embedded-specific security
practices. We hope this paper spurs further discussion and improve-
ment within the educational frameworks and industrial practices
surrounding embedded systems security.
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A The General Process of eCTF

Figure 1 illustrates the general process of eCTF. The handoff phase
typically begins one and a half months after the design phase starts.
After successfully completing function tests in the handoff phase,
a team enters the attack phase immediately. The competition ends
approximately one and a half months after the handoff phase be-
gins.
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Figure 1: The general process of eCTF.

B Code Examples

Listing 2 shows the optimized away memset in a C function by T12.
Listing 3 shows the crypto_wipe function defined in the Mono-
cypher library. These code samples are referenced in Section 4.1.2.

Listing 4 shows the modified linker script by T18, as detailed in
Section 4.2.1.

Listing 5 and 6 show the constant-time password comparison
function from T18 and the random delay macro from T15, which
are referenced by Section 4.3.

1 void unlockCar(FLASH_DATA *fob_state_ram) {
2 if (fob_state_ram->paired == FLASH_PAIRED) {
3 ...
4 MESSAGE_PACKET message;
5 char buffer[64];
6 memset(buffer, 0, 64);
7 ...
8 message.buffer = buffer + 1;
9 struct tc_aes_key_sched_struct s;
10 ...
11 tc_aes_encrypt((message.buffer)-1, (message.buffer)-1, &s);
12 ...
13 memset(&s, 0, sizeof(struct tc_aes_key_sched_struct));
14 memset(message.buffer, 0, 64);
15 }
16 }

Listing 2: The C code of a function that uses memset to zeroize

local buffers. In the compiled firmware, the second memset
was optimized away.

1 #define ZERO(buf, size) FOR(_i_, 0, size) (buf)[_i_] = 0
2
3 void crypto_wipe(void *secret, size_t size) {
4 volatile u8 *v_secret = (u8*)secret;
5 ZERO(v_secret, size);
6 }

Listing 3: The crypto_wipe function defined in the Mono-

cypher library. The volatile keyword prevents potential

compiler optimizations.

1 MEMORY
2 {
3 FLASH (rx) : ORIGIN = 0x00008000, LENGTH = 0x00038000
4 SRAM (rw) : ORIGIN = 0x20000000, LENGTH = 0x00008000
5 }

Listing 4: The linker script snippet showing that the SRAM

region is set to read and write only by T18.

1 int ConstantCompare(const uint8_t* a, const uint8_t* b, int length)

{↩→
2 int i;
3 int compareSum = 0;
4 for (i = 0; i < length; i++) {
5 compareSum |= a[i] ^ b[i];
6 }
7 return compareSum;
8 }

Listing 5: The constant-time password comparison function

from T18. Given a fixed length argument, the execution time

of this function is constant, and is independent of the simi-

larity of the two string inputs.

1 #define RAND_STALL() \
2 rand_ret = -1; \
3 rand_ret = fillEntropyBuf(rand_rbt, 2); \
4 if (rand_ret == -1) halt_and_catch_fire(); \
5 rand_i = 0; \
6 rand_y = 0; \
7 for (rand_i = 0; rand_i < rand_rbt[0]; rand_i++) \
8 rand_y += 1; \
9 rand_ret = ((rand_i == rand_y) && (rand_rbt[0] == rand_y))

Listing 6: The random delay macro from T15.
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C Background Survey

C.1 Personal background questions

(1) Which year of the MITRE eCTF did you participate?
(2) What was your degree type during the eCTF? For example,

high school, undergraduate, Master’s, Ph.D., or other.
(3) What was your program of study (major)?
(4) Does your institution offer embedded- or IoT-specific secu-

rity courses? If so, did you take those courses before the
competition? Have you taken them since the competition?

(5) Does your institution offer other security courses? If so, did
you take those courses before the competition? Have you
taken them since the competition?

(6) Have you previously participated in the eCTF competition?
If so, when?

(7) What is your experience with other security competitions?
(8) What was your design or implementation experience of the

embedded systems before the eCTF?

C.2 Team-related questions

(1) How many active members were on your team? Please only
include members who regularly contributed during the com-
petition.

(2) How many students expressed interest in competing but
did not remain active until the end of the competition? If so,
what are some of the reasons that they became less involved?

(3) How much was your teams’ faculty advisor involved in the
eCTF? (give some hints)

(4) Did your institution offer class credit for participation in this
competition? If yes, how many credits?

(5) What was your role and contribution in the team?
(6) What were the degree-level and program of study for the

other participants on the team?
(7) What was the general level of experience among your team

members?

D Interview Questions

Prior to each interview, we ensured that interviewees read and
understood the consent information sheet and were fully informed
about the study’s scope, their rights as interviewees, and our confi-
dentiality measures. At the beginning of each session, verbal con-
sent was recorded to confirm their willingness to participate.

D.1 Software-related questions

(1) The principle of least privilege is a computer security practice
that gives tasks least access rights based on their job. The
Microcontroller Unit (MCU) used in the competition supports
two privilege levels. However, our analysis found that none of
the competing teams utilized this privilege separation feature.

(a) Did your team know that this MCU offers two privilege
levels?

(b) Why didn’t your team use both privilege levels of the
MCU?

(c) Do you think using both privilege levels would have im-
proved the security of your design?

(2) The compiler and linker provide multiple security enforcement
options that can be enabled through editing the Makefile or
linker script.

(a) Do you know the benefits ofmaking the stack non-executable?
(b) Do you know there are compiler flags to make the stack

non-executable, and you can also mark the SRAM region
as non-executable in the linker script?

(c) Do you know how these compiler flags or linker script
attributes work under the hood?

(d) Did you know the memory protection unit (MPU)? How
did you know it?

(3) Stack canaries are a security feature that detects stack buffer
overflows by placing a random value before the return address
on the stack. When the function returns, the canary value is
checked to see if it has been modified.

(a) Did you know the stack canary feature before the compe-
tition?

(b) Why didn’t your team use the stack canary feature?
(4) Using the C standard library on embedded systems can be

tricky due to limited resources and specific requirements.
(a) Before the competition, did you aware that some of the

C standard library functions perform differently on the
embedded system compared to a general purpose system?

(5) (Some teams)We found in your team’s design, the non-executable
stack and relro compiler flags were added in the Makefile.

(a) What was the intention in using the flags?
(b) Were these flags effective at meeting the intentions?

(6) (Some teams) We found in your team’s design, the SRAM
attribute in the linker script was changed to read/write only.

(a) What was the intention in changing this attribute?
(b) Were these changes effective at meeting the intentions?

D.2 Questions related to memory wiping

(1) Sensitive data, such as encryption keys, can be stored in some
secure storage at rest, and then be loaded to the main memory
for computation. To minimize the time window for sensitive
data residing in the main memory, one can clear out the data in
the main memory after use. This protection is called memory
wiping.

(a) Did your team use or attempt to use the memory wiping
as a defense technique?
(i) If so,
- how did your team implement it?
- what was your intention in using it?
- how did you confirm that your use met the intentions?
- (some teams) we found in your team’s design, some of
the memset function calls were optimized out by the
compiler in the resulting assembly. How do you think
of this?

(ii) If not, were you aware that these techniques existed
before the competition?

(iii) Did you know that the compiler may optimize away
some code, which in the compiler’s view, has no effect
on the later code?
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(iv) Did you know that the compiler may treat some of the
security-related code as unnecessary and optimize it
away?

(2) (Some teams) We found in your team’s design, you imple-
mented your own inline wiping function instead of using those
provided by the library.

(a) Why did your team choose to do this?
(b) Do you know your inline function to erase the memory is

translated into memset in the resulting assembly?
(c) Did you intend to do this, or you didn’t notice what hap-

pened during the compilation?
(3) (Some teams)We found in your team’s design, you used the

memory wiping functions provided by the crypto libraries.
(a) Why did your team choose to use the wiping functions

provided by the crypto libraries, instead of using the libc
standard functions such as memset?

(b) Did you know that libc’s wiping functions could be opti-
mized?

D.3 Questions related to memory-safe

programming

(1) Embedded systems are usually developed in memory unsafe
low-level languages such as C, this is also the language that the
reference design used. A memory-safe language, such as Rust,
aims to significantly reduce memory corruption vulnerabilities
in a program while keeping the performance high if used in a
proper way.

(a) What were the factors you consider when you choose
which language to use?

(b) (Teams used C/C++) We found your team did not choose to
use a memory-safe language, such as Rust.
(i) What stopped you from using a memory-safe language?
(ii) Would you consider using it in the future? Why or why

not?
(iii) Do you believe that utilizing a memory-safe language

like Rust can eliminate memory vulnerabilities in em-
bedded systems?

- (skip the rest of questions in this section)
(c) (Teams used Rust)We found your team used the Rust pro-

gramming language in the design.
(i) What was your level of experience in using the Rust

programming language?
(ii) What were the challenges when using Rust on this

microcontroller-based system?
(iii) Would you use it again if you still participate in the

future? Why and why not?
(2) (Some teams)We found in your team’s design, you mixed C

and Rust for the implementation.
(a) What motivated your Rust/C hybrid design?

(3) The Rust programming language also provides the unsafe code
block which allows developers to violate the memory safety
rules. Abusing the unsafe code block could void the memory
safety feature of Rust. But sometimes it is necessary to use it
for embedded system development.

(a) When or where did you feel you have to use unsafe blocks?

(b) How did you approach the use of unsafe blocks in your
Rust code? Did you have any security concerns when
using them, and did you try to minimize their usage?

(c) What approaches did you use to minimize the number of
lines of code in unsafe blocks?

(4) Did you or your team run into any significant roadblocks in
using Rust, such as excessively large binaries, that you had
to work around? Did you have to make any compromises in
the process?

D.4 Questions related to RNG

(1) In cryptography, a Random Number Generator (RNG) is essen-
tial for creating secure cryptographic keys, generating nonces,
and ensuring randomness in various security protocols.

(a) Did your team use the random number generator in the
design?
(i) If so,
- did your team implemented your own RNG, or just used
one that provided by the library/SDK? Why?

- how confident were you in your team’s RNG implemen-
tation?

- did you have any concerns about the robustness of the
vendor-provided RNG?

- what entropy sources did your team choose to seed the
RNG? Why?

- how confident were you in your entropy design?
- how did your team test the effectiveness of the RNG
design?

(ii) If not, why didn’t your team consider including random-
ness in the design?

(b) (2023) Did you know the board had an internal tempera-
ture sensor that could serve as an entropy source? How
did you know it?

(c) (2024) Did you know the board had a True Random Num-
ber Generator (TRNG)? How did you know it?

D.5 Questions related to threat model

(1) What is the threat model of your team’s design?
(2) What are the particular types of attack that you considered

to address in your design?
(3) For each of the attacks that was not mentioned in the pre-

vious answer, e.g., brute-force, MITM, cold boot attack (to
dump the memory), side-channel and fault injection, ask
them the following questions:

(a) What is your understanding of this attack?
(b) Did you consider this attack in your threat model? Why

not?
(c) How did your design mitigate this attack? How effective

was that defense?
(d) How did the embedded nature of the system influence

your approach?
(4) In terms of attack surface, do you think the embedded system

has a larger or smaller attack surface compared to a desktop
system? Why?
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(5) Regarding the software vulnerabilities and potential hard-
ware attacks, which one would you give more priority to
defend against? Why?

(6) Questions related to comparing the user-controlled input with
secret values.

(a) When checking PIN value, which method or function did
your team use to compare two values?

(b) Why did you choose this method/function?
(c) Did you know how the strcmp/memcmp function works?

If so, how? (stop at the first difference)
(d) What issues do you think exist in these functions?

(7) (Some teams) We found in your team’s design, random delays
were added between some operations.

(a) What was the purpose of adding these random delays?
(b) Where do you think are the best locations of adding these

delays?

D.6 Questions related to vulnerability discovery

(1) There are many ways to find vulnerabilities in a system, such
as checking the source code, analyzing the disassembly code of
the compiled firmware, dynamically debugging the programs
during the runtime, fuzzing, and so forth.

(a) How did your team evaluate the correctness and security
of your own design?

(b) How did your team do debugging when implementing
your design on the board?

(c) How did your team find vulnerabilities in other teams’
design during attack phase?

(d) Did your team use any static or dynamic techniques to
detect errors?

D.7 Ending questions

(1) Are there any other notable practical challenges that you
encountered during the competition?

(2) Is there anything else you would like to share with us?

E Codebook

The codebook contains theme names, theme descriptions, and as-
sociated sub-themes, as detailed in Table 2.
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Table 2: Codebook.

Theme Name Theme Description Sub-theme

Knowledge of se-
curity
principles

Statements that describe the
awareness and understanding
of general security knowledge.

* Participants were not aware of privilege separation.
* Those that knew about privilege separation were unaware that it is offered by Cortex-M.
* Other participants were not confident that privilege separation would improve the security of the system.
* They believed that their logic lacked flaws, so privilege separation was not needed.
* Participants were unaware of memory wiping as a defense technique.
* Participants didn’t believe that memory wiping would improve the security of their system.
* Participants were not aware that the compiler optimized their memory wiping out.
* Some were aware that the compiler optimizes out unnecessary code, but none were aware that memory setting would be optimized out.

Knowledge of
tools/features

Statements that describe the un-
derstanding embedded system
development tools/features.

* Participants were not aware that the NX compiler flag did not make memory non-executable on the microcontroller.
* Participants were unaware that they could use the MPU to set regions of memory as non-executable.
* Participants were not aware that some C standard library functions performed differently on the embedded system compared to a
general-purpose system (e.g., time(), printf()).

Knowledge of
cryptography

Statements that describe partici-
pants’ knowledge of using cryp-
tography on an embedded sys-
tem.

* Participants were not aware of the different modes offered by AES, and therefore did not choose the best mode for their system.
* Participants were not aware of the best cryptographic algorithms for their embedded system.
* Participants might not know that standard cryptographic operations on a general-purpose system might be infeasible on a microcontroller
due to processor capability (e.g., clock speed).

Attack and
defense

Statements that describe the
awareness of embedded-prone
attacks and how participants de-
fense them.

* Participants were not always aware of embedded-prone attacks that they must implement defenses for.
* Even if participants were aware of embedded-prone attacks, they are not always aware how to defend against them.
* Even if participants are aware of embedded-prone attacks and they try to implement a defense, their defense is conceptually flawed.

Embedded Mem-
ory

Statements that describe chal-
lenges of using embedded sys-
tem memory.

* Participants mentioned that memory bugs are more severe because everything (Flash, SRAM, peripherals) is accessible in a single memory
space.
* Participants mentioned that storing sensitive data is more difficult on microcontroller systems.
* Participants mentioned that the lack of dynamic memory management and OS on the microcontroller systems poses security challenges
and may downgrade the security design.
* Participants mentioned that the limited flash and SRAM space in statically linked microcontroller systems makes it harder to use third-party
libraries.
* Participants mentioned that testing and debugging is harder on a microcontroller compare to the microprocessor systems.

Embedded Rust
support

Statements that describe partic-
ipants’ challenges of using Rust
for embedded system develop-
ment.

* Participants thought Rust is useful because it eliminates virtually all memory safety bugs.
* Participants mentioned having to remove the Rust standard library because there is no operating system support on the embedded system
(e.g., memory allocation).
* Participants mentioned some libraries not running because the Rust standard library wouldn’t work on the embedded system.
* Participants mentioned having no direct vendor support for getting Rust to compile to the board.
* Participants mentioned encountering excessive stack memory consumption because of how the Rust compiler constructs objects. Because
embedded systems are resource constrained, using excessive stack memory will eventually cause issues.
* Participants mentioned having to write a HAL, perhaps using unsafe blocks, in order to let Rust access board hardware.

Experience with
Rust

Statements that describe par-
ticipants’ understanding of the
Rust language.

* Participants thought Rust is useful because it eliminates virtually all memory safety bugs.
* Participants that didn’t use Rust cited lack of experience / programming knowledge as a reason.
* Despite their lack of knowledge about the language, participants believed that Rust eliminates memory bugs.

Security-related
compiler flags

Statements that describe the
knowledge of security-related
compiler flags.

* Participants did not notice any warnings from the compiler when security-related flags have no effect.
* Participants tried to use NX, or tried to modify the linker script, but none of the them knew that these were not effective.
* Some participants were aware of security concepts like NX, but were not sure how to apply it to their design.
* Participants did not know that because the ELF header is removed when the firmware is flashed to the board, any bits that are set in the
header are always discarded.

Lack of
entropy source

Statements describe the aware-
ness and knowledge of entropy
source of embedded systems
and how participants get ran-
dom numbers.

* Participants aware that an entropy source is needed to seed the random number generator for cryptographic operations.
* Participants may unaware that general-purpose systems get their entropy from system time, cursor location, sources of noise, etc.
* Participants were not aware the existance of the CPU temperature sensor which was a good source of entropy.
* Participants who aware the CPU temperature sensor all used it as the entropy source.
* Participants mentioned the use of mixed entropy sources. Build time entropy supplied by host, run time entropy from systick timer, cycle
count, uninitialized SRAM (didn’t work).
* Participants were aware the board vendor provided an API for true random number generator.
* Participants mentioned only used one secure of entropy, such as build-time entropy, or no entropy. Some teams used rand() and time(),
which doesn’t work on microcontroller.
* Participants had challenges in testing their RNG design on the microcontroller.
* Participants were unaware that the same library might work different between a microprocessor system and a microcontroller, e.g., the
libc standard library time() function, and no warning is given to the user.
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