
ENOLA: Efficient Control-Flow Attestation for Embedded Systems

Md Armanuzzaman Engin Kirda Ziming Zhao
m.armanuzzaman@northeastern.edu ek@ccs.neu.edu z.zhao@northeastern.edu
CactiLab, Northeastern University Northeastern University CactiLab, Northeastern University

Abstract
Microcontroller-based embedded systems are vital in daily
life, but are especially vulnerable to control-flow hijacking
attacks due to hardware and software constraints. Control-
Flow Attestation (CFA) aims to precisely attest the execution
path of a program to a remote verifier. However, existing
CFA solutions face challenges with large measurement and/or
trace data, limiting these solutions to small programs. In ad-
dition, slow software-based measurement calculations limit
their feasibility for microcontroller systems. In this paper,
we present ENOLA, an efficient control-flow attestation so-
lution for low-end embedded systems. ENOLA introduces
a novel authenticator that achieves linear space complexity.
Moreover, ENOLA capitalizes on the latest hardware-assisted
message authentication code computation capabilities found
in commercially-available devices for measurement computa-
tion. ENOLA employs a trusted execution environment, and
allocates general-purpose registers to thwart memory corrup-
tion attacks. We have developed the ENOLA compiler through
LLVM passes and attestation engine on the ARMv8.1-M
architecture. Our evaluations demonstrate ENOLA’s effective-
ness in minimizing data transmission, while achieving lower
or comparable performance to the existing works.

1 Introduction

Embedded systems powered by microcontrollers (MCUs)
play a vital role in everyday life by controlling and enabling
a wide range of systems. Unfortunately, despite the unpar-
alleled benefits these systems offer, they remain susceptible
to cyberattacks [33, 56]. Among these threats, control-flow
hijacking stands out as particularly dangerous, as it allows
arbitrary code execution, and grants attackers full control of
the system. Numerous efforts have been made to prevent or
detect control-flow hijacking in MCU-based systems. These
efforts include techniques such as forward-edge control-flow
integrity [37, 52, 61], shadow stack implementations [30, 69],
return address integrity mechanisms [9, 38], control-flow vi-
olation detection [58, 63], and software-fault isolation [60].

However, since embedded systems are often deployed in the
field, it is crucial not only to detect control-flow hijacking, but
also to demonstrate to a remote verifier the runtime control-
flow transfers of the system.

To address this need, Control-Flow Attestation (CFA) was in-
troduced as a technique for precise attestation of a program’s
execution path [10]. However, existing CFA approaches, such
as C-FLAT [7], LO-FAT [29], OAT [57], and Blast [65], face
a significant challenge in transmitting large volumes of mea-
surement and/or trace data. The size of these transmissions
grows either exponentially with the number of basic blocks
in the program, or linearly with the runtime execution trace.
As a result, these methods are limited to handling only small
programs or code snippets.

Additionally, many existing CFA solutions depend on
software-implemented keyed hash functions to compute mea-
surements, which introduces several issues: 1) they store cryp-
tographic keys in memory, making them vulnerable to mem-
ory corruption or cold-boot attacks [36], even when stored
within a Trusted Execution Environment (TEE), 2) the re-
source constraints of MCUs significantly hinder the perfor-
mance of software-based implementations, leading to con-
siderable delays in measurement calculations. Notably, ex-
isting solutions have predominantly been implemented and
evaluated on high-performance microprocessors rather than
resource-constrained MCUs.

In this paper, we introduce ENOLA, an efficient control-flow
attestation solution designed specifically for low-end em-
bedded systems. The primary objectives and challenges of
ENOLA are: 1) to algorithmically minimize the footprint of
trace and measurement data, 2) to enable efficient measure-
ment computation on off-the-shelf low-end embedded devices.
Additionally, ENOLA must ensure its own security, preventing
tampering, or disabling by privileged software, and guaran-
teeing the integrity of trace and measurement data.

Our work addresses the first challenge by introducing a novel
authenticator that combines a basic block occurrence trace

1

ar
X

iv
:2

50
1.

11
20

7v
1

 [
cs

.C
R

]
 2

0
Ja

n
20

25

with two distinct measurements representing both the forward
and backward execution paths. This authenticator achieves
linear space complexity with respect to the number of basic
blocks in the attested program, ensuring scalability and ap-
plicability to larger programs. ENOLA leverages a Trusted
Execution Environment (TEE), such as the Cortex-M Trust-
Zone, to securely acquire the basic block occurrence trace.
Specifically, the ENOLA compiler instruments the attested pro-
gram, enabling it to report basic block occurrence information
to the TEE.

To address the second challenge, ENOLA leverages novel
hardware-assisted Message Authentication Code (MAC) ca-
pabilities, such as the Pointer Authentication (PA) extension
in ARMv8.1-M [6, 45], achieving a speed improvement of
over two orders of magnitude. Specifically, the ENOLA com-
piler instruments instructions to utilize these features during
forward and backward control-flow transfers, enabling the
calculation of two chained measurements. Unlike existing
approaches that incur significant overhead due to context
switches to the TEE for measurement, ENOLA minimizes
this overhead by utilizing the MAC extension within the Rich
Execution Environment (REE).

To protect these measurements from memory corruption at-
tacks, the ENOLA compiler dedicates two general-purpose
registers exclusively for storing them, ensuring they are not
spilled onto memory. The cryptographic key registers for
these instructions are initialized within the TEE, and the
ENOLA code scanner verifies that the compiled REE binary is
free of instructions, or Return-Oriented Programming (ROP)
gadgets capable of altering the key registers.

We implemented ENOLA on the Cortex-M85 MCU, and eval-
uated its effectiveness and performance using a syringe pump
application [34], Embench [5], and wolfSSL [64] with O2 and
Oz optimization levels. Notably, prior solutions have not been
tested on large programs such as wolfSSL, and have been
limited to evaluations using the less practical O0 optimization
level. Our evaluation results show that ENOLA significantly
reduces the size of authenticators while maintaining com-
petitive performance compared to existing approaches. The
contributions of this paper are summarized as follows:

• We note that existing CFA approaches lack a compre-
hensive analysis of the space complexity associated with
trace and measurement data. To address this gap, we
formalize the concept of control-flow attestation, and
identify the limitations present in prior studies.

• We present ENOLA, a secure and efficient approach to
CFA. ENOLA introduces an innovative authenticator that
achieves linear space complexity with respect to the num-
ber of basic blocks in the attested program. Additionally,
it leverages novel security extensions for measurement
generation, significantly reducing the need for context
switches to the TEE for measurements.

• We implement ENOLA and evaluate its security and per-
formance on the Cortex-M85 microcontroller system.
Our evaluations demonstrate ENOLA’s effectiveness in
minimizing data transmission while achieving perfor-
mance that is either lower or comparable to existing
approaches. To promote transparency and facilitate arti-
fact evaluation, we have made the source code available
online1.

2 Formalizing the Complexity of CFA

Modeling control-flow attestation. In control-flow attesta-
tion, a remote verifier V requests a prover P to execute a pro-
gram P by sending a challenge c to ensure the freshness of the
request. P executes P , and a trusted measurement engine E
within P generates an attestation report R , which is then trans-
mitted to V. The attestation report R = (Auth,SigKa(Auth,c))
is composed of a cumulative authenticator Auth of the control-
flow path and a signature over Auth and c using a key Ka. The
authenticator Auth = (T,M) may include a full or partial trace
T of the control-flow path and/or a measurement M.

We model P ’s interprocedural Control Flow Graph (CFG) as
GP = (V,E), where V represents the set of basic blocks, and
E represents the set of control-flow transfers among the basic
blocks defined by P . Each basic block vi ∈V is characterized
by an entry point vi.s, and an exit point vi.e, while each edge
ei ∈ E is defined by a source address ei.s and a destination
address ei.d. The full execution trace TP of program P is
represented as a sequence of all non-sequential control-flow
transfer destinations (e1.d, . . . ,el .d). We use n to denote the
number of forward branch instances in TP , which includes
conditional jumps and indirect calls/jumps, and m to denote
the number of backward branch instances (i.e., returns) in
TP . Thus, the total number of branches is l = n+m. In most
cases, the number of forward branch instances exceeds the
number of backward ones in TP (i.e., n > m), and there are
significantly more forward branch instances in TP than there
are basic blocks in GP (i.e., n≫ |V |).

Full-trace based approach. In a naive trace-based attesta-
tion scheme, the authenticator Auth consists of the full trace
TP , and the measurement is simply the cryptographic hash of
the full trace. The combined space complexity of the trace
and the measurement is O(l). Subsequently, the verifier V
performs an abstract execution of P . During abstract execu-
tion, whenever a non-sequential control-flow transfer site is
encountered, V verifies whether the next record in TP belongs
to the destination set of the site i, denoted as ∪ei.d. The time
complexity for verification is O(l) as well. However, due to
the theoretically unbounded nature of l (e.g., in the presence
of an infinite loop) and its practically substantial size, this

1https://github.com/CactiLab/ENOLA-Efficient-CFA-for-Embedded-
Systems

2

Complexity Analysis Evaluation Environment
Trace† Measurement† Verification‡ CPU Apps (optimization levels) Evaluation Size

Naive trace-based O(l) O(1) O(l) n/a n/a n/a
OAT [57] O(n) O(1) O(l|E|) Multi-core Cortex-A 5 IoT apps including syringe pump [34] (O0) n < 1,000

C-FLAT [7] n/a O(2|V |) O(2|V |) Multi-core Cortex-A Syringe pump (O0) |E|= 322
LO-FAT [29] n/a O(2|V |) O(2|V |) Customized multi-core RISC-V Syringe pump (O0) |E|= 322

Blast [65] O(2|V |) O(1) O(2|V |) Multi-core Cortex-A Syringe pump and Embench [5] (O0) |V |< 987

ENOLA O(|V |) O(1) O(2|V |) Single-core Cortex-M Syringe pump, Embench, and wolfSSL [64] (O2 and Oz) |V |< 5,480

Table 1: Comparing the space†/time‡ complexity and evaluation environments in C-FLAT, LO-FAT, OAT, Blast, and ENOLA.

approach is impractical, even for small programs running on
resource-constrained embedded systems.

OAT. To reduce the trace size, OAT [57] employs three tech-
niques: 1) For each conditional branch, OAT uses a single bit
to denote whether the branch is taken. Compared to record-
ing the entire address, this approach reduces the size while
maintaining the same asymptotic space complexity. 2) For
each forward indirect branch (i.e., indirect jumps and indirect
calls), OAT records the destination address. 3) For backward
edges, OAT maintains a single chained hash value of return
addresses, denoted as H = hash(H⊕RetAddr). For the hash
function, OAT uses a software implementation of BLAKE-
2s [16]. During abstract execution, V tracks the branch direc-
tion using the bit to determine whether a conditional branch
is taken or not, validates destination addresses for indirect
branches, and calculates and verifies hashes for return instruc-
tions. OAT reduces the trace and measurement size complex-
ity to O(n), while the verification time complexity for V in
OAT is O(l|E|).

C-FLAT and LO-FAT. In C-FLAT [7] and LO-FAT [29], the
authenticator Auth consists solely of measurements, exclud-
ing any trace information entirely (i.e., T =∅). An exemplary
Auth takes the form of (H1,⟨H2,5⟩,⟨H3,4⟩, ..., ...), where H1
represents the cumulative hash of a path without loops, ⟨H2,5⟩
signifies the cumulative hash of a path inside a loop executed
five times, and ⟨H3,4⟩ represents the cumulative hash of a
different path inside the same loop executed four times. With
this approach, if P has no loops, the measurement consists of
only a single value, resulting in a space complexity of O(1).
However, when loops are present, the measurement space
complexity in C-FLAT and LO-FAT grows to O(2|V |), as it is
bounded by the number of possible paths within loops, which
is itself bounded by O(2|V |). Additionally, because no trace in-
formation is available, the verifier V must explore all possible
paths to verify Auth, leading to a time complexity of O(2|V |).
For the hash function, C-FLAT employs a software imple-
mentation of BLAKE-2 [16], while LO-FAT incorporates a
hardware SHA-3 engine directly into a RISC-V MCU.

Blast. To further reduce the trace size, Blast [65] does not
generate traces at the basic block level; instead, it operates
at the function level. Each entry in the trace takes the form
(Func,Path), where Func represents the name of a function,
and Path denotes the acyclic Ball-Larus path number [20]
within that function. To handle loops, Blast employs Ball-

Larus’ technique of resetting the path number to a non-zero
value at the back-edge of the loop. This approach effectively
divides the Control Flow Graph (CFG) into a series of acyclic
components, with each component independently computing
path numbers. Consequently, for a CFG with loops, the size
of a function’s trace is represented as a set of path numbers,
which in the worst case corresponds to the number of paths in
the function, bounded by O(2|V |). The measurement in Blast
is computed as a hash of the trace. Blast utilizes a software
implementation of BLAKE-2s [16] as the hash function.

Limitations of existing schemes. As shown in Table 1, due
to the substantial size of the trace or measurement data—such
as the O(n) trace in OAT, the O(2|V |) measurement in C-
FLAT and LO-FAT, and the O(2|V |) trace in Blast, existing
approaches can only handle whole but small programs or even
snippets, often referred to as operations (i.e., self-contained
tasks or logic). Note that our complexity analysis provides
an upper bound. In practice, real-world programs typically
do not exhibit the worst-case complexity. Nonetheless, the
space complexity of authenticators remains a fundamental
limitation, affecting the scalability of previous approaches.
For instance, OAT was evaluated on operations containing
fewer than 1,000 forward branches (n), C-FLAT was tested on
programs with up to 322 edges (|E|), and Blast was evaluated
on programs with at most 987 basic blocks (|V |). Moreover,
LO-FAT requires modifications to the CPU, making it incom-
patible with off-the-shelf devices.

3 Hardware Primitives on MCU

In this section, we discuss the ARMv8-M MCU architecture,
on which we implemented and evaluated ENOLA.

ARMv8-M Architecture and TrustZone. The ARMv8-M
architecture is designed with a 32-bit physical address space.
It features 16 general-purpose registers, namely r0 to r15.
Among these, r13/sp serves as the stack pointer, r14/lr (link
register) holds the return address during subroutine calls,
and r15/pc is the program counter. ARMv8-M includes a
trusted execution environment called TrustZone. The division
of secure and non-secure states in TrustZone is based on a
memory map, where a memory region can be designated as
secure, non-secure callable (NSC), or non-secure. Secure state
components can directly access non-secure resources, while
the NSC region acts as a bridge for transitioning from the
non-secure to the secure state, facilitated by the sg (Secure

3

Gateway) instruction.

ARMv8.1-M Pointer Authentication. The Pointer Authenti-
cation (PA) extension [4] includes several instructions, such
as pacg, as detailed in Table 2 (Appendix). These instructions
generate a keyed Pointer Authentication Code (PAC) for a
pointer or data using the QARMA block cipher [18]. The
MCU provides four key registers for different use cases as
shown in Table 3 (Appendix). For example, when the pacg in-
struction is executed in the unprivileged level and non-secure
state, the pac_key_u_ns register is implicitly used as the key
to compute the PAC. These key registers can only be modified
using the privileged msr (move-to-system-register) instruc-
tion. Additionally, the secure state privileged code can modify
both keys associated with the non-secure state.

4 ENOLA

In this section, we first outline the system and threat model,
and then describe the functionality of each ENOLA module.
As depicted in Figure 1, ENOLA consists of compile-time
modules, a run-time attestation engine, and a remote verifica-
tion module.

4.1 System and Threat Model
System model. ENOLA operates under the assumption that
the processor in the embedded system provides a Trusted
Execution Environment (TEE) and hardware capabilities for
keyed message authentication code computations within the
Rich Execution Environment (REE). The attested program
can execute at either the unprivileged or privileged level
within the REE, while the ENOLA attestation engine operates
within the TEE. The verifier in ENOLA can reside on any
system or device, such as x86, Cortex-A, etc., but is assumed
to be on a powerful machine or cloud-based system to ensure
fast verification.

Threat model. We assume the presence of a secure boot
mechanism in the embedded system to ensure both 1) the
ENOLA attestation engine’s code and data, and 2) the REE
software, are securely loaded at boot time. Not every piece
of code within the REE requires attestation; the portion that
undergoes attestation is referred to as the attested program.
We assume code immutability, e.g., W⊕X, for the attested
program. While the ENOLA attestation engine is trusted dur-
ing runtime, the control flow of the REE software, including
the attested program, could be compromised at runtime. A
control-flow hijacking attack might lead to the execution of
existing functions or unintended ROP gadgets. The prover
and verifier share both the measurement key (Km) and attesta-
tion key (Ka). The measurement key is used for calculating
measurements, while the attestation key is employed to sign
the attestation report. We assume secure storage is available
to protect both the measurement key and attestation key at

rest. However, attackers could attempt to compromise mem-
ory content within the REE, use ROP gadgets to manipulate
general-purpose registers, and modify key registers.

TOCTOU attacks [26], interrupt service attestation, and phys-
ical attacks such as power analysis, timing attacks, and elec-
tromagnetic analysis are considered out of scope for ENOLA.

4.2 ENOLA Trace and Measurement Schemes
In ENOLA, the authenticator Auth = (T,M) is designed to
include a basic block occurrence trace (TO) and measurements
M = ⟨M f ,Mb⟩, which represent the forward path (M f) and the
backward path (Mb) taken by P. Within the scope of this paper,
the backward path is specifically defined as the sequence of
function returns. TO is not a traditional trace of sequential
operations; instead, it is structured as follows:

TO = ({⟨vi.s,#vi⟩|i = 0, ..., |V |−1∧#vi ̸= 0},{ti|ti /∈
⋃|V |−1

i=0 vi.s})

Here, vi.s represents the start address of the basic block vi,
and #vi indicates the occurrence count of vi during an exe-
cution. When #vi equals zero, the pair ⟨vi.s,#vi⟩ is omitted
from TO . Legitimate indirect branch or call targets correspond
to the start addresses of all basic blocks. However, in cases
involving non-legitimate targets, such as the middle of an
instruction in ROP attacks, TO can include a list of these
target addresses in ti | ti /∈

⋃|V |−1
i=0 vi.s. Essentially, any appear-

ance of ti in TO represents a control-flow violation. In prac-
tice, |ti | ti /∈

⋃|V |−1
i=0 vi.s| is a small number, and ENOLA sets

a maximum threshold to maintain the constant size of this
component. Therefore, the trace space complexity is linear
with respect to the number of basic blocks, i.e., O(|V |).

The measurement M is composed of two cumulative mea-
surements for the forward path, i.e., M f and the backward
path, i.e., Mb, respectively. We utilize the same hash chain
approach to calculate both measurements as follows. HKm

represents the measurement function with the key of Km. For
M f , the destination address is denoted by di, while for Mb, di
represents the return address.

Mi =

{
HKm(0,di) if i = 0
HKm(Mi−1,di) if i > 0

4.3 ENOLA Components and Workflow
The workflow of ENOLA consists of three distinct stages:
compile-time, run-time, and verification-time.

Compile-time. ENOLA Compiler: The instrumentation by the
ENOLA compiler serves two primary purposes: 1) Reporting
Control-Flow Events: The instrumentation reports control-
flow transfer events in the program to the attestation engine,
which operates in a secure state. This enables the attestation
engine to construct TO , a trace of the program’s execution.
The details of TO construction will be discussed in §4.4. 2)

4

C
Attested
Program
Source
Code

Enola
Compiler

Attested Program
Normal State

PA Hardware

Compile-time

Run-time

Secure State

v1
v3

v2

v7

v6v4

v5

Ret1

Untrusted domain

CFG

Trusted domain

Enola Code
 Scanner

1

Ret2

Enola
Attestation

Engine Registers for

Record trace

Configure
2

3

4

5
Send report

…

Verification-time

Enola
Analyzer

ITL

ITL

Enola Trusted components

Enola Verifier

 Retrieve
measurements

Attestation
Report

Instrumented
Binary

Figure 1: The workflow of ENOLA

Calculating and Storing Measurements: The instrumentation
uses PA instructions to compute measurements and stores
them in designated general-purpose registers. These measure-
ments are further elaborated in §4.5. Since the measurements
are never stored in memory, they are inherently protected from
memory corruption attacks. This approach ensures secure and
reliable operation of the attested binary program.

Furthermore, the ENOLA compiler generates an over-
approximated control-flow graph (CFG) that is utilized by
the ENOLA verifier for abstract execution. Note that generat-
ing a comprehensive CFG encompassing all possible control-
flow transfers remains an open research challenge [22, 25].
However, in the context of microcontroller-based systems, the
program P is typically less complex than desktop applications.
This simplicity, combined with advancements in control-flow
analysis techniques [40, 47], supports the widely accepted
assumption that the CFG for such systems can be treated as
complete [7, 19, 24, 46, 66–68].

This assumption forms the foundation for leveraging the CFG
in the attestation and verification processes.

ENOLA Code Scanner: Since the compiled program may exe-
cute at the privilege level of the normal world, it presents a
potential vulnerability where attackers could manipulate PA
key registers or reserved general-purpose registers used for
measurements. To mitigate this risk, ENOLA incorporates a
code scanner to ensure the integrity of the execution environ-
ment. The ENOLA code scanner performs a comprehensive
analysis to verify that no programs operating in the normal
state – including the attested program, libraries, and the ker-
nel – contain any instructions or gadgets capable of tampering
with these critical registers. This proactive approach ensures
the security of the measurement process by preventing unau-
thorized modifications at the software level.

This goal is accomplished by verifying that all programs oper-
ating in the normal state lack any msr instructions for writing
to the PA key registers and mov or pop instructions altering
the two designated general-purpose registers. Should the code
scanner identify any such instructions, it alerts a warning mes-
sage to the developer, indicating that employing these instruc-

tions could compromise the security guarantees of ENOLA.
Therefore, the developer can revise the source code to elimi-
nate the use of such instructions. Through this process, it is
ensured that no part of the normal world can make unautho-
rized modifications to these critical security components. This
approach has also been recognized and employed in previous
studies as an accepted and adopted practice [30, 69].

This goal is achieved by verifying that all programs oper-
ating in the normal state do not contain any unauthorized
instructions capable of altering critical security components.
Specifically: 1) The code scanner ensures there are no msr
instructions used for writing to the PA key registers. 2) It de-
tects and flags mov or pop instructions that could modify the
two designated general-purpose registers used for measure-
ments. If the scanner identifies such instructions, it issues a
warning to the developer, indicating that their presence could
compromise the security guarantees of ENOLA. This allows
the developer to revise the source code and eliminate the
problematic instructions. By enforcing these constraints, the
code scanner ensures that no part of the normal world, in-
cluding the attested program, libraries, or kernel, can make
unauthorized modifications to these critical security compo-
nents. This methodology has been validated and adopted as
a best practice in previous research studies [30, 69], further
reinforcing its effectiveness in maintaining a secure execution
environment.

ENOLA Analyzer: The ENOLA analyzer facilitates efficient at-
testation by enabling the ENOLA attestation engine to quickly
determine whether the destination of an indirect branch corre-
sponds to a valid basic block. This determination is crucial
for deciding whether to update {⟨vi.s,#vi⟩} or {ti} during ex-
ecution. To achieve this, the ENOLA analyzer provides the
capability to perform both static analysis and dynamic anal-
ysis on the instrumented binary. These analyses are used to
construct an Indirect Target List (ITL), which contains the
valid destination addresses for all potential indirect branches
or calls. The presence of the ITL eliminates the need for
the attestation engine to dereference and validate the destina-
tion address of an indirect branch at run-time to determine
whether it corresponds to the starting address of a legitimate
basic block. This optimization significantly improves the per-
formance and reliability of the attestation process.

Run-time. ENOLA Attestation Engine: At run-time, the at-
tested program P executes in the normal state, while the
ENOLA attestation engine runs in the secure state. When the
system boots, the ENOLA attestation engine executes first,
and receives a nonce c from the remote verifier (1). It then
retrieves keys from secure storage and configures the PA key
registers (2). During the configuration step, the attestation
engine also enables the PA hardware to operate in the nor-
mal state. As previously mentioned, during the execution
of the program, instrumented instructions trigger the attesta-

5

tion engine to record the occurrence trace TO (3). Addition-
ally, these instrumented instructions invoke the PA hardware
to generate measurements and store the cumulative values
⟨M f ,Mb⟩ in reserved registers. Once the execution of P con-
cludes, the attestation engine retrieves these values from the
reserved registers (4). Subsequently, it generates a signature
over Auth = (TO ,⟨M f ,Mb⟩) along with c, constructing the
attestation report. This report is then transmitted to V for
verification (5).

Verification-time. ENOLA Verifier: Upon receiving the report
from P, V initiates the verification process by authenticating
the signature using c and Ka. The ENOLA verifier then ab-
stractly executes P , guided by the occurrence trace TO , while
comparing the recalculated measurements with the received
values. The core component of the ENOLA verifier is a back-
tracking algorithm, which will be discussed in detail in §4.6.

4.4 Secure Generation of TO

The secure generation of TO involves three steps: the ENOLA
attestation engine provides runtime branch destination re-
porting interfaces, the ENOLA compiler instruments calls to
these interfaces, and the ENOLA attestation engine logs the
resulting trace.

Non-secure callable branch destination reporting inter-
face. The ENOLA attestation engine introduces two non-
secure callable functions, denoted as report_direct and
report_indirect, to allow the attested program to report
its branch destinations. The report_direct function does
not require any parameters, as the ENOLA attestation en-
gine can directly infer the destination address of each branch
site. In contrast, the report_indirect function requires
the destination address to be provided as a parameter in r0.
Both functions are annotated with the ARM Clang compiler
__attribute__((cmse_nonsecure_entry)) directive of
the Cortex-M Security Extensions (CMSE) [3]. This direc-
tive instructs ARM Clang to produce a trampoline within the
non-secure callable memory region and position the actual
function within the secure memory region. Although both the
trampoline and the actual function share the same name, as
shown in Listings 6 and 7 (Appendix) for the direct branch
reporting case, they operate within distinct symbol scopes. To
report direct branches, the ENOLA compiler instruments the
attested program to initiate calls (using the bl instruction) to
the report_direct trampoline, ensuring that the branch des-
tination is preserved in the lr register. As shown in Listing 6,
the trampoline contains only two instructions: a secure gate
and a direct branch. Neither instruction modifies the lr regis-
ter. Listing 7 further demonstrates that the ENOLA attestation
engine extracts the direct branch destination (vi.s) of the at-
tested program from the lr register. For indirect branches, the
destination is available in r0 for the attestation engine.

1 comparator:
2 cmp r0, #0x2
3 bne <branch_2>
4 branch_1:
5 push {r0-r3, lr}
6 mov r0, pc
7 add.w r0, r0, #0xb
8 pacg r10, r0, r10 ;update measurement M f
9 bl <report_direct> ;report occurrence trace

10 pop {r0-r3, lr}
11 ldr r0, [sp, #0x4];branch-1 instructions
12 ...
13 branch_2:
14 push {r0-r3, lr}
15 mov r0, pc
16 add.w r0, r0, #0xb
17 pacg r10, r0, r10 ;update measurement M f
18 bl <report_direct> ;report occurrence trace
19 pop {r0-r3, lr}
20 ldr r0, [sp] ;branch-2 instructions

Listing 1: Instrumentation example: direct branches. Trace
reporting in light green, measurement calculation in light blue

Instrumenting Reporting: Direct Branches and Loops.
For direct branches, such as those generated from if-else or
switch statements in the C programming language, ENOLA’s
instrumentation involves inserting "bl <report_direct>"
instructions. These calls are placed at the beginning of each
branch target basic block, such as branch_1 and branch_2,
as shown in Listing 1. To reduce instrumentation overhead,
ENOLA avoids instrumenting basic blocks that end with
branch instructions, such as the comparator block and the
bne instruction in Listing 1. Since these blocks immediately
dominate their branch target basic blocks, additional tracing
is unnecessary. Listing 1 illustrates an example where in-
strumented calls are inserted on lines 9 and 18 to report the
taken path. To ensure correctness and avoid interference, the
ENOLA instrumentation surrounds these calls with instruc-
tions to store and restore the caller-saved registers, along with
the lr register, to or from the stack. This precaution is par-
ticularly important because these registers may be used as
general-purpose registers, especially under O2 or Oz compiler
optimizations (as shown in lines 5, 10, 14, and 19).

In the case of loops, the ENOLA compiler instruments the
loop body and exit basic blocks as shown in the example
in Listing 2. The loop condition block is not instrumented
because it is the immediate dominator of both the body and
exit blocks. This method inherently accounts for the break
statement, as the block it is in is immediately post-dominated
by the exit block.

Instrumenting Reporting: Indirect Branches. Unlike direct
branches, which have statically determined targets, indirect
branches can be manipulated to jump to arbitrary locations,
including potentially the middle of instructions. As a result,
in addition to instrumenting the start of target basic blocks,
as is done for direct branches, the ENOLA compiler must also

6

1 ldr r0, [sp, #0x4] ;loop counter
2 ldr r1, [sp, #0x10] ;loop limit
3 loop_condition:
4 cmp r0, r1
5 bge <loop_exit>
6 loop_body:
7 push {r0-r3, lr}
8 mov r0, pc
9 add.w r0, r0, #0xb

10 pacg r10, r0, r10 ;update measurement M f
11 bl <report_direct> ;report occurrence trace
12 pop {r0-r3, lr}
13 ... ;loop-body instructions
14 adds r0, #0x1
15 b <loop_condition>
16 loop_exit:
17 push {r0-r3, lr}
18 mov r0, pc
19 add.w r0, r0, #0xb
20 pacg r10, r0, r10 ;update measurement M f
21 bl <report_direct> ;report occurrence trace
22 pop {r0-r3, lr}
23 add sp, #0x18 ;loop-exit instructions

Listing 2: Instrumentation example: loops

instrument indirect calls or jumps to capture the destination
address. Unlike direct branches, the destination addresses of
indirect branches cannot be derived from the lr register. In-
stead, they may involve any general-purpose register used by
the blx or bx instructions. Listing 3 provides an example of
instrumenting an indirect call site (Line 8), where the trampo-
line call receives the target address via the r0 parameter. The
process involves saving caller-saved registers (r0 - r3) to the
stack, then transferring the target address into r0 (Line 4) to
set up for the report_indirect trampoline invocation (Line
6). The instrumented sequence concludes with restoring the
caller-saved registers from the stack (Line 8).

1 movw r3, r8
2 movt r3, r9
3 push {r0-r3} ;store caller-saved registers
4 mov r0, r3 ;copy destination to r0
5 pacg r10, r0, r10 ;update measurement M f
6 bl <report_indirect>;report occurrence trace
7 pop {r0-r3} ;restore caller-saved registers
8 blx r3 ;indirect call site

Listing 3: Instrumentation example: indirect calls

4.5 Secure and Efficient Calculation of Mea-
surements

Measurement key initialization. The ENOLA attestation
engine retrieves the measurement key Km from the secure
storage and loads it into the PA key registers pac_key_u_ns
and pac_key_p_ns with the privileged msr instruction. This
component should be implemented in assembly, leveraging
general-purpose registers to temporarily transfer the keys
from secure storage to the PA key registers. As a result, the
measurement key Km is never spilled to memory.

1 prologue:
2 push {r7, lr}
3 sub sp, #0x28
4 ...
5 epilogue:
6 add sp, #0x28
7 ldr r4, [sp, #0x4]
8 pacg r11, r4, r11 ;update measurement Mb
9 pop {r7, pc}

Listing 4: Instrumentation example: non-leaf function return

Reserving general-purpose registers. To prevent measure-
ments from being spilled to memory, the ENOLA compiler
reserves the general-purpose registers r10 and r11 to securely
store M f and Mb, respectively. Both registers are initialized
to zero before the attestation engine transfers control to the
non-secure state. These registers are specifically chosen be-
cause they are the callee-saved registers with the highest nu-
merical identifiers in the ARM Procedure Call Standard [3].
Consequently, apart from the instrumented measurement cal-
culation instructions, the compiled REE program—including
the attested program—does not utilize these two registers,
ensuring that the cumulative measurements are not spilled to
memory. Furthermore, because r10 and r11 are callee-saved
registers, the REE program produced by this method is com-
patible with programs not compiled by the ENOLA compiler,
including pre-compiled libraries. In cases where any unin-
strumented program uses these registers, it will restore their
original values upon return. However, such usage could cause
the measurements to be spilled into memory, exposing them
to potential memory corruption attacks.

Instrumenting measurement calculation: forward path.
ENOLA utilizes the pacg instruction to compute the measure-
ments. Similar to the instrumentation used for direct branch
reporting, the ENOLA compiler inserts PA instructions at the
start of all destination basic blocks for forward branches. This
is illustrated by the light blue instructions in Listings 1 and 2.
Specifically, the instrumentation retrieves the program counter
value into a free general-purpose register (e.g., r4) and sub-
sequently increments it by a predetermined value to obtain
the target basic block address (vi.s) (Lines 6-7 in Listing 1).
Then, a pacg instruction is instrumented to sign the value
in the available general-purpose register, using the previous
measurement stored in r10 as the modifier (Line 8). Simi-
lar to the instrumentation for indirect branch reporting, the
ENOLA compiler instruments the indirect branch sites with
PA instructions. Listing 3 shows an example pacg instrumen-
tation (Line 5) for an indirect call site, where the destination
is already copied to the r0 register for trace reporting.

Instrumenting measurement calculation: backward path.
The ENOLA compiler instruments pacg instruction before
all function returns to construct the Mb measurements. In
the Cortex-M architecture, non-leaf functions preserve return
addresses on the stack by pushing lr, as shown in Line 2

7

of Listing 4. Subsequently, function returns are executed by
directly popping the saved return address into pc. For non-
leaf functions, ENOLA instrumentation first loads the return
address from the stack into a free general-purpose register.
It then inserts a pacg instruction to compute Mb, storing the
result in the r11 register, as demonstrated in Lines 7 and 8.

Conversely, leaf functions retain the return address in lr with-
out spilling it to the stack. They return via the "bx lr" or
"mov pc, lr" instructions. Returns from leaf functions are
directly instrumented using the "pacg r11, lr, r11" in-
struction, as shown in Line 3 of Listing 8 (Appendix). It is
important to note that ENOLA does not report the occurrence
trace for the backward path, thereby eliminating the need for
a context switch to the attestation engine in the secure state.

4.6 Backtracking Algorithm for Verification

The ENOLA verifier employs the backtracking algorithm pre-
sented in Algorithm 1 (Appendix) to verify the legitimacy
of the attested control path. The algorithm takes as inputs
the attestation report R and the control-flow graph GP of
the attested program, which includes the entry basic block
(P entry) and the potential exit points (P exits).

The algorithm begins by verifying the attestation report signa-
ture and checking for any illegal indirect branch targets. Upon
successful verification, it abstractly executes the program us-
ing the GP and validates both the forward and backward mea-
surements. The execution starts at Pentry, initializes an empty
simulated call stack to track function returns, and recursively
executes various branches as guided by Auth.

Based on the last instruction (vc.e) within the current basic
block (vc) the algorithm executes one of the following: 1) Pro-
gram Exit: If the last instruction in vc is a program exit, the
verifier concludes execution and compares the computed mea-
surements with the received values in Auth. 2) Function Call:
For a function call at vc.e, the verifier pushes the address of the
next instruction onto the simulated call stack and continues
execution at the call target. 3) Conditional Branch: If vc.e is a
conditional branch, the algorithm explores all potential paths
emanating from the current basic block after verifying them
against TO . A non-zero value in the occurrence count signifies
a valid transition to that target. The algorithm decrements the
count, updates the forward measurement, and proceeds along
the path. If no valid targets exist in TO , the path is deemed
invalid, and the algorithm backtracks. 4) Return Instruction:
When vc.e is a return instruction, the backward measurement
is updated, and execution continues at the return target, ob-
tained from the simulated function call stack.

5 Security Analysis

To successfully hijack the control flow and bypass ENOLA’s
monitoring, an attacker must meet five key attack prerequi-
sites: (P1): Disable or bypass the instrumented code. (P2):
Influence ENOLA measurements M f and Mb, or tamper with
the measurement key Km in the PA key registers. (P3): Exe-
cute malicious control flow to generate hash collisions. (P4):
Exploit non-secure callable trampoline interfaces in the at-
testation engine. (P5): Replay or corrupt Auth, TO , or the
attestation key Ka to manipulate verification at V.

P1 is mitigated under the realistic assumption of code im-
mutability, as demonstrated by various prior works [23, 39].
Furthermore, any attempt to bypass the instrumentation or
interface calls would be reflected in the measurements M f
and Mb. For P2, the measurements M f and Mb are stored in
reserved general-purpose registers, and only the instrumented
pacg instructions are permitted to access these registers. The
compiled binary is rigorously vetted by the ENOLA code
scanner, which detects any unauthorized instructions that ma-
nipulate the reserved registers or the PA key registers.

An attacker may attempt to launch control-flow violation at-
tacks by exploiting vulnerabilities in the embedded applica-
tion. However, these attacks will be detected during verifica-
tion through the trace and measurements. To avoid detection,
the attacker would need to construct a sophisticated attack
that results in hash collisions (P3). Such an attack is highly
infeasible due to the low collision probability of the QARMA
block cipher with a 64-bit modifier, which is approximately
2−60 [17]. ENOLA further complicates such attacks by chain-
ing measurements, using the previous control-flow measure-
ment as a modifier for the subsequent one, thereby increasing
the difficulty of generating valid hash collisions.

TEE security guarantees prevent the direct manipulation of
Auth, TO , or Ka, as these elements are stored and signed in
the secure state. Replay attacks are also thwarted by the use
of a random nonce. Although M f and Mb are stored in REE
registers, the failure to achieve P2, combined with the trusted
ARM PA hardware for measurement computation, ensures the
integrity of the measurement chains in Auth. Consequently,
exploiting trampoline interface calls becomes the only viable
option to manipulate Auth or TO . To counter this, the ENOLA
compiler prohibits any direct world-switch calls targeting the
attestation engine interfaces, allowing such calls only at in-
strumented locations. Furthermore, to safeguard the interfaces
from exploitation through indirect calls or jumps, the ENOLA
compiler can adopt commonly used Software Fault Isolation
(SFI) techniques [60], such as address masking, for each indi-
rect transfer event. As a result, attackers are prevented from
achieving P4, and when combined with TEE and ARM PA
security guarantees, P5 is also effectively mitigated.

8

6 Implementation

We developed a prototype of ENOLA for the ARMv8.1-M
architecture. The ENOLA LLVM compiler modules comprise
4,675 lines of C++ code. The ENOLA attestation engine con-
sists of 307 lines of C and inline assembly code. The ENOLA
analyzer consists of 138 lines of Python code. Additionally,
the code scanner and verifier are implemented with 93 and 694
lines of Python code, respectively, leveraging the angr [11]
and pyelftools [35] libraries.

Enola
Annotator

Register
Allocation

Instruction
Selection

Enola
Instrumentor

Front-end Back-end

Constant
Island

IR … …

Figure 2: ENOLA passes in the LLVM pass pipeline

The ENOLA compiler is implemented by adding a front-end
pass, named ENOLA Annotator, and a back-end pass, called
ENOLA Instrumentor, to the LLVM embedded toolchain for
ARM version 16.0.0 [14]. Additionally, we modified the
class ARMBaseRegisterInfo to update register allocation
constraints and reserve two measurement registers.

The ENOLA Annotator annotates functions and all valid direct
branch destination basic blocks with LLVM metadata in the in-
termediate representation (IR) to enable back-end instrumen-
tation. The ENOLA Instrumentor uses these IR annotations to
instrument the basic blocks, inserting instructions to calculate
the forward path measurement and the report_direct tram-
poline calls. Additionally, the back-end pass identifies indirect
branches and inserts the necessary preceding instructions for
report_indirect trampoline calls. It also inserts PA instruc-
tions for calculating the backward path measurement before
function returns.

The instrumentation process addresses additional challenges
when dealing with O2 and Oz optimizations. Due to constraints
imposed by LLVM IR phi nodes, all instrumentation is routed
through the back-end ENOLA Instrumentor. Additionally, the
use of lr as a general-purpose register requires stacking and
unstacking operations, as depicted in Listing 1. Achieving
non-leaf returns (via the stack) is accomplished by modifying
the class ARMFrameLowering, where lr is added to the saved
register list for functions annotated by the ENOLA Annotator.
The LLVM compiler addresses limitations in immediate off-
set instructions by employing the ARMConstantIsland pass,
which introduces nearby constant pool islands. The ENOLA In-
strumentor integrates with this pass to make additional adjust-
ments to instrumentation addresses, as illustrated in Figure 2.
Moreover, the ENOLA Instrumentor leverages the completion
of instruction selection and register allocation passes in the
LLVM back-end pass pipeline to ensure precise and efficient
instrumentation.

The ENOLA analyzer utilizes angr [11] to identify valid target
addresses for instructions that induce indirect control-flow

changes. Additionally, it employs dynamic training in a con-
trolled environment with benign inputs to uncover control-
flow transfers that may have been overlooked by angr. The
analyzer ultimately produces an Indirect Target List (ITL)
containing all destination addresses for all indirect calls and
branches. The ENOLA code scanner disassembles the gener-
ated binary using angr and scans for privileged msr instruc-
tions or Return-Oriented Programming (ROP) gadgets that
could overwrite the ARM PA key or measurement registers.

7 Evaluation

7.1 Evaluation Environment
We evaluated ENOLA on the ARM Versatile Express Cortex-
M prototyping FPGA system (V2M-MPS3) [2]. We con-
figured this system as a Cortex-M85 microcontroller run-
ning at 25MHz using the AN555 FPGA image (BSP version
1.3.0) [1]. As indicated in Table 1, ENOLA is the first solu-
tion to be evaluated on single-core, low-end embedded CPUs,
whereas previous solutions were all evaluated on multi-core,
high-end, or mid-range CPUs.

7.2 Micro-level Performance Evaluations
pacg versus software-implemented hash functions. Fig-
ure 3 presents a micro-performance analysis comparing a sin-
gle execution of the pacg instruction for measurement with
software implementations such as SHA-256 and BLAKE2s.
We evaluated the software measurement implementations at
both Oz (optimized for size) and O2 (optimized for speed)
optimization levels. As shown in the table, a pacg instruc-
tion consumes 12 CPU cycles, with Oz-optimized SHA-256
and BLAKE2s needing 5,083 and 7,939 cycles, respectively.
In contrast, O2-optimized SHA-256 and BLAKE2s consume
4,054 and 5,768 cycles, respectively. Given BLAKE2s’ preva-
lence as a hash function in prior CFA solutions, a measure-
ment calculation in ENOLA is at least 480 times faster than
software-based measurements in earlier approaches.

Time (µs)CPU Cycles

0

100

200

300

400

0

2,000

4,000

6,000

8,000

pacg
SHA-256 (O2)

SHA-256 (Oz)
BLAKE2s (O2)

BLAKE2s (Oz)

12

4054
5083

5768

7939

0.48

162.16
203.32

230.72

317.56

CPU Cycles Time (µs)

11/23/24, 10:29 PM line-simple (33).html

file:///C:/Users/dakum/Downloads/line-simple (33).html 1/1

Figure 3: Execution time comparison: a single execution
of the pacg instruction versus single runs of software-
implemented hashing functions on a 25MHz Cortex-M85

ENOLA micro-level runtime overhead. Initializing PA key

9

0%

50%

100%

150%

200%

250%

aha-mont64
crc32 cubic edn

huffbench
matmult-int

md5sum
minver

nbody
nettle-aes

nettle-sha256
nsichneu st

tarfind ud AES MD5
HMAC RSA

18
.1

9

11
.0

8

0.
99 14

.1
6

75
.6

9

9.
94 17

.0
8 60

.1
3

10
.7

11
.5

5

18
.5

6

16
5.

34

5.
45

11
0.

56

49
.2

6

20
.2

7

23
.3

1

29
.2

1

10
4.

04
4

2.
21 13

.9
4

3.
36 14

.6
5

33
.6

5

13
.7

2

12
.0

5

64
.3

2

16
.2

10
.8

4

10
.9

4

16
3.

48

4.
93

38
.8

9

42
.5

8

8.
86 21

.3

26
.8

9

90
.7

9

15
.7

4

6.
62 12

.4
5

13
.4

6

31
.2

9

11
.1

6

11
.9

4 45
.7

3

14
.9

7

8.
28 15

.2
2

22
0.

33

8.
33 17

.7
2

32
.2

6

16
.1

7

22
.1

3

28
.4

7

81
.5

9

6.
86

3.
1 6.
94

0.
06

28
.5

8

0.
23 2.
32

48
.0

1

23
.2

8 56
.9

8

4.
31

22
4.

64

0.
32

10
0.

69

24
.4

7

7.
76 14

.4
6

18
.2

5

71
.5

793

52

8

60

73

52

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

52

66

43 37

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

66 66 66

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

Enola-O2 Enola-O2 w/ unroll Enola-Oz Enola-Oz w/ unroll Blast

Embench wolfSSL

12/5/24, 3:49 PM line-pen (7).html

file:///C:/Users/dakum/Downloads/line-pen (7).html 1/1

(a) Code size overhead (%)

0%

300%

600%

900%

1,200%

1,500%

1,800%

aha-
mon

t64 crc3
2 cubi

c edn
huffb

ench
matm

ult-in
t

md5
sum minv

er
nbod

y
nettl

e-aes

nettl
e-sha

256
nsich

neu st
tarfin

d ud AES MD5
HMAC RSA

12
0.
49

25
2.
58

16
.4
6 17
9.
42

55
6.
63

75
.8
6

54
7.
34

68
3.
51

73
.6
1

12
7.
99

23
.5
6

85
6.
2

9.
81

91
1.
2

59
2.
83

24
.5

11
.5
5

48
.6
6

41
2.
45

1.
66 36
.7
1

15
.0
2

36
7.
92

74
6.
47

44
8.
6

64
.8
4

75
0.
97

75
.4

10
2.
82

22
.6
2

14
59
.8
1

69
.3
9

93
0.
32

62
0.
71
2

26
.0
6

11
.8
9

34
3.
49

34
5.
35

20
0.
35

24
3.
72

32
.9

40
8.
37 65

2.
31 84
9.
45

59
2.
64

10
44
.3
2

15
4.
76

14
6.
57

50
.3
1

86
1.
62
6

10
9.
81

94
0.
26

77
6.
79

27
.7
3

10
.4
7 23
8.
05 44
3.
91

68
.6
5

0.
79 18
.3
9

13
.0
9

11
28
.2
6

1.
14

11
.4
5

10
66
.5
7

72
.2
9

10
3.
34

13
.7
4

16
40
.6
7

0.
18

39
9.
37

79
8.
74

29
.1
5

11
.5
7

51
.1
1

37
4.
53

15
1

80
8

15 75 86 32 N
ot

 E
va

lu
at

ed
 b

y
B

la
st

10
2

57 31 9 N
ot

 E
va

lu
at

ed
 b

y
B

la
st

52
8

51
8

70

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

Embench wolfSSL

12/5/24, 3:47 PM line-pen (6).html

file:///C:/Users/dakum/Downloads/line-pen (6).html 1/1

(b) Execution time overhead (%)

⁰10
¹10
²10
³10
⁴10
⁵10
⁶10

aha-mont64
crc3

2 cubic edn
huffbench

matmult-int
md5sum

minver
nbody

nettle
-aes

nettle
-sha256

nsichneu st
tarfin

d ud AES MD5
HMAC RSA

16
8

48 40

58
4 84
0

64

24
8 36
0

19
2 40

8

14
4

30
56

16
0

10
72

60
8

33
6

15
2 48

8 11
92

32

10
4

32 56

59
2

15
2 23
2 63

2

23
2

23
2

96

29
92

14
4 48

0

43
2

25
6

21
6 48

0

42
4

96

32 48

26
4

25
6

80

16
0 41

6

12
8 28

8

14
4

30
48

88 16
8

23
2

31
2

16
8 58

4

49
6

80

24 32 40

25
6

40

80

41
6

88

26
4

24
8

30
48

24

31
68

19
2

23
2

16
8 40

8

53
676
8

14
7 21
6 81

8

97
50

37
0

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

69
9

40
8 84

3

33
6

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

47
6

25
77

56

53
3

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

Embench wolfSSL

12/5/24, 3:40 PM line-pen (4).html

file:///C:/Users/dakum/Downloads/line-pen (4).html 1/1

(c) Auth size in bytes

Figure 4: Code size, Auth, and execution time overhead comparison between ENOLA and Blast

registers consumes approximately 112 CPU cycles, whereas
a single instrumented direct branch, loop body, loop exit, and
indirect call takes around 67, 71, 69, and 64 CPU cycles re-
spectively, as shown in Table 4 (Appendix). The ENOLA attes-
tation engine utilizes a table indexed by the starting address of
each basic block (vi.s) to store each basic block’s occurrence
trace. This structure allows for O(1) time complexity when
accessing and updating the occurrence trace.

7.3 Evaluations on Syringe Pump Application
Our evaluation used a version adapted by the C-FLAT [7],
with minor source code adjustments to accommodate our
compilation process for the Cortex-M85 microcontroller.
The program consists of two main control-flow paths: the
move-syringe path, which either dispenses or withdraws the
specified bolus amount (+/-), and the set-quantity path,
which defines the bolus amount in milliliters from user input.
Figure 5 illustrates the comparison of execution overhead and
Auth sizes for both control-flow paths.

Execution time overhead and Auth size. Our evaluation at-
tested the entire program, in contrast to OAT and C-FLAT’s
partial attestation and Blast’s single path evaluation. For the

 A
ut

h
(b

yt
es

)

 E
xe

cu
tio

n
O

ve
rh

ea
d

(%
)

0

400

800

1,200

1,600

0

25

50

75

100

move-syringe set-quantity

1.3

67.9

6.6

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

1.9

N
ot

 E
va

lu
at

ed
 b

y
O

AT

93.7

D
at

a
no

t P
re

se
nt

ed
 b

y
C

-F
LA

T

88 48

D
at

a
no

t P
re

se
nt

ed
 b

y
B

la
st

N
ot

 E
va

lu
at

ed
 b

y
B

la
st

69
N

ot
 E

va
lu

at
ed

 b
y

O
AT

1179

1527
Enola Blast OAT C-FLAT

12/6/24, 3:17 PM echarts (7).svg

file:///C:/Users/dakum/Downloads/echarts (7).svg 1/1

Figure 5: Execution overhead and Auth size comparison on
syringe pump application

move-syringe path, we used bolus sizes of 0.10, 0.50, 1, and
2 ml, where ENOLA has the lowest average execution time
overhead of 1.3% among the existing approaches. Note that
Blast’s attestation, which operates at the function level granu-
larity for the entire application (in contrast to ENOLA’s basic
block level granularity), incurs a significantly higher average
overhead of 6.6 ENOLA generated a maximum Auth size of
88 bytes, a substantial reduction compared to C-FLAT’s 1,179
bytes for partial attestation. OAT has a smaller Auth size of
69 bytes, however it did not attest loops in the program. In
the set-quantity path, ENOLA produces a 67.9% execu-
tion time overhead and an Auth size of 48 bytes. The higher
execution overhead is due to the small operation of character-

10

1 steps = mLBolus * ustepsPerML;
2 for (i = 0; i < steps ; i++){
3 if(serialStr[0] == '+')
4 dispense();
5 else if(serialStr[0] == '-')
6 withdraw(); }

Listing 5: Syringe pump code snippet: light blue loop body
instrumentation

to-integer conversion within a loop. Conversely, C-FLAT’s
exponential Auth generation leads to a maximum of 1,527
bytes for the highest input length.

Case study: anomalous behavior in the move-syringe path.
We conducted a case study on anomalous behaviors in the
move-syringe path, similar to Blast, demonstrating ENOLA’s
ability to detect such control flow violations. The anoma-
lous path under consideration is shown in Listing 5, and in-
volves a loop iteration for dispensing or withdrawing a spec-
ified bolus amount. The total motor steps are governed by
the steps variable, which depends on the values mLBolus
and ustepsPerML (Line 1). Here, mLBolus is the user input
known to the ENOLA verifier and the steps value or loop iter-
ation count can be statically determined since ustepsPerML
remains constant. For instance, bolus amounts of 0.010 and
0.011 correspond to 68 and 75 iterations, respectively. As
ENOLA instruments the beginning of loop bodies, the verifier,
using offline analysis of the program binary and user input
(mLBolus), can determine the loop body’s execution count
and detect such anomalous behaviors.

7.4 Evaluations on Embench Applications
Table 5 (Appendix) presents the Lines of Code (LoC) and
CFG statistics of the Embench [5] applications, along with the
ENOLA instrumentation sites for each application. We also
evaluated Embench applications with loop unrolling by using
the -mllvm-unroll-count compiler flag. Figure 4 details
the percentage increase with and without loop unrolling in
code size due to ENOLA, execution time overhead, the result-
ing Auth size in bytes, and comparisons of each with Blast.
We selected Blast for comparison because it demonstrates the
best performance among previous works, and has also been
evaluated using Embench.

0%

2%

4%

6%

8%

10%

12%

aha-
mont6

4
crc3

2 cubi
c edn

huffb
ench
matmult-in

t
md5su

m
minve

r
nbod

y
nettl

e-aes

nettl
e-sha

256
nsich

neu st
tarfin

d ud

0.
04

0 0 0.
25

7.
36

0.
51 1.

9

10
.7
6

0

1.
09 1.
65

0 0.
6

0.
15 1

0 0 0

1.
19 1.
42

0 0.
26 0.
97

0 0.
21

3.
85

0 0 0.
22

0

O2 Oz

11/23/24, 9:06 PM line-simple (14).html

file:///C:/Users/dakum/Downloads/line-simple (14).html 1/1

Figure 6: Code size overhead due to register reservation

Code size overhead. For O2, ENOLA with and without loop

unrolling incurs an average code size overhead of 29.71%
and 38.57%, whereas Oz exhibits an overhead of 35.3% and
32.62%, respectively. This impact on code size is contingent
upon the number of nodes meeting the instrumentation criteria
specified by the ENOLA design. Comparing the CFG, instru-
mentation sites data without loop unrolling from Table 5, it’s
evident that there is less instrumentation in Oz compared to
O2, resulting in reduced code size overhead. However, there
is an exception in nsichneu, where instrumentation sites are
similar in both optimizations and generate a higher overhead
in Oz with the same amount of ENOLA instrumented code.
The ENOLA code size overhead is significantly lower com-
pared to Blast (64%) on the Embench benchmark applications,
even without including complex applications like nsichneu.
OAT reported a 13% size overhead but it’s evaluated on small
parts of the programs without loops or function calls.

We also assessed the impact on code size caused by reserving
two measurement registers for ENOLA. Figure 6 shows the
affect of register reservations on application code size for both
optimization levels. On average, O2 results in higher overhead,
as it applies more aggressive optimizations compared to Oz.

Execution time overhead. The ENOLA execution time over-
head on average is comparatively lower with O2 optimization
level. Even though from Table 5, we observe Oz has fewer
instrumented basic blocks compared to O2, code shrinking to
optimize the binary size leads to extra repetitive executions of
those basic blocks and instrumented instructions. As a result,
throughout all applications, we get a higher runtime overhead
with Oz. For example, st’s O2 overhead is 9.81% with 29
direct instrumentation sites, while Oz overhead is 11 times
higher even with 13 direct instrumentation sites. Further anal-
ysis indicated that the increase in trampoline invocations or
instrumented code executions from 18,852 for O2 to 230,101
for Oz is the cause. Adapting loop unrolling optimization, for
most cases, especially with Oz, ENOLA’s overhead decreases
compared to execution without loop unrolling. For some ap-
plications such as huffbench, the total number of attestation
control flow events significantly increases, resulting in higher
overhead than without loop unrolling.

The ENOLA evaluation demonstrates a more realistic exe-
cution time overhead compared to previous works. Those
solutions were evaluated on multicore Cortex-A CPUs using
O0 optimizations, involved only partial attestation, and offered
coarse-grained attestation capabilities. Blast reports execution
time overhead of 185% with parallel execution of log com-
mit and even though single thread execution of P with log
commit has an overhead of 175%, it requires function lining.
Besides that Blast attestation produces verification capabil-
ity at function-level granularity while ENOLA enables basic
block-level verification. Even then, Figure 4b illustrates that
for six applications: aha-mont64, crc32, edn, matmult-int,
st, and tarfind ENOLA outperforms Blast on at least one

11

optimization level. On the common applications with Blast
(excluding md5sum and nsichneu), ENOLA observes average
execution time overheads of 322.20% and 278.64% for O2
with and without loop unrolling, whereas for Oz the overhead
is 284.54% and 431.53%, respectively. ENOLA’s average over-
head is lower compared to other works of OAT and C-FLAT.
OAT attests only to specific operations of a program with-
out loops or function calls with a 2.7% overhead or 546%
overhead when applied to a full program. And C-FLAT when
applied to a whole program generates an overhead of 1004%.
Given the above reasons and the usage of ARM PA hard-
ware for measurement, the ENOLA execution time overhead
is lower or comparable to those of prior work.

0%

20%

40%

60%

80%

100%

aha-mont64
crc32cubic edn

huffbench
matmult-int

md5sum
minver

nbody
nettle-aes

nettle-sha256
nsichneu st

tarfind ud AES MD5
HMAC RSA

Enola-Instrumentation Context-Switch to Secure State

11/23/24, 6:54 PM line-simple (7).html

file:///C:/Users/dakum/Downloads/line-simple (7).html 1/1

Figure 7: ENOLA runtime overhead breakdown for instrumen-
tation (O2) and context-switch to secure state

The total execution time overhead of ENOLA can be divided
into two categories: the ENOLA-instrumentation overhead
involving the instrumented instructions along with attestation
engine trampoline execution and the context-switching over-
head when transitioning to the secure state. Figure 7 shows
the breakdown of these two categories for O2 optimization
level, with context-switching accounting for about 26% of the
total overhead. This overhead could be eliminated by leverag-
ing secure storage for occurrence traces in the normal state,
such as through SFI techniques utilized in Blast or leveraging
unprivileged load-/store instructions used in Silhouette [69].

Auth size. Figure 4c compares the Auth sizes of ENOLA with
four optimizations and Blast using Embench. ENOLA with Oz
produces fewer conditional branches compared to O2, lead-
ing to a reduced number of entries. In ENOLA, the Auth size
depends on the number of unique vi.s encountered during
program execution, while in Blast, repeated executions of the
same basic blocks result in separate entries for each direct
function call and higher Auth sizes. An exception to this gen-
eral trend is the ud (O2) application, which exhibits a smaller
Auth size with Blast compared to ENOLA. Further analysis
revealed that ud contains a lot more conditional branches than
function calls, leading to a smaller Auth size in Blast.

To demonstrate that ENOLA generates Auth with linear space
complexity relative to the number of basic blocks, rather than
control flow events as in existing works, we plot Auth sizes
for Embench applications in Figure 8a and Figure 8b. Fig-
ure 8a illustrates the trace and measurement schemes linearly

A
ut

h

Basic Blocks

0

300

600

900

1,200

0 30 60 90 120 150

w/o unroll w/ unroll
aha-mont64 crc32 cubic edn huffbench matmult-int

md5sum minver nbody nettle-aes st

nettle-sha256 tarfind ud

12/5/24, 2:02 PM line-smooth (1).html

file:///C:/Users/dakum/Downloads/line-smooth (1).html 1/1

(a) Auth linear to number of unique basic blocks

A
ut

h

Attestation Control Flow Events

0

200

400

600

800

1,000

1,200

0 2000K 4000K 6000K 8000K 10000K

11/24/24, 5:08 PM line-simple (47).html

file:///C:/Users/dakum/Downloads/line-simple (47).html 1/1

(b) Auth not affected by attestation control flow events

Figure 8: ENOLA Auth linear to number of basic blocks in-
stead of attestation control flow events

aligns with basic blocks as discussed in Table 1 and Sec-
tion 4.2. In Figure 8b, we observe that Auth does not correlate
with the number attestation control flow events like existing
approaches. For instance, aha-mont64 and edn exhibit a sim-
ilar count of control flow events (4,000K) but have 3 and 73
unique instrumented basic blocks, resulting in Auth sizes of
32 and 592 bytes, respectively.

7.5 Evaluations on wolfSSL Applications
We evaluated four larger applications from wolfSSL [64], a
library commonly used in embedded systems.

Specifically, we examined a 128-bit AES application pro-
cessing 1KB of data, the MD5 message-digest algorithm, an
HMAC application generating SHA256 hashes on 1KB of
data, and a 2048-bit RSA asymmetric encryption application
on 16 bytes of data. Among the four applications, RSA has
the most complex CFG with 5,480 basic blocks and 3,309 of
them were instrumented by ENOLA.

Code size and execution time overhead. Figures 4a and 4b
also include the code size and execution time overheads re-
spectively on the wolfSSL applications. Although the average
code size overhead closely resembles that of Embench, the
average execution time is notably lower for both optimiza-
tion levels. This discrepancy can be attributed to the minimal
overhead of the MD5 message digest application. The loop
unrolling optimization positively affects the code size and
execution time overhead for large applications like RSA by
reducing the conditional and loop condition basic blocks.

Auth size. Figure 4c contains the Auth sizes generated by

12

ENOLA for the four wolfSSL applications. These applications
execute significantly more instrumented unique basic blocks
compared to Embench, resulting in larger Auth sizes. Adapt-
ing loop unrolling optimization for applications like RSA (O2)
reduced the unique basic blocks, thereby shrinking the Auth
size from 1,192 bytes to 424 bytes. However, it is evident that
the Auth size even for larger applications in ENOLA scales
linearly with the number of basic blocks.

8 Related Work

Attestation of embedded software integrity. SWATT [55]
enables a remote verifier to detect instances where an attacker
alters the code to perform unauthorized activities. VIPER [42]
follows a similar approach to detect proxy attacks based on
peripheral firmware for remote attestation frameworks. Pi-
oneer [54] addresses the issue of verifiable code execution
on untrusted legacy systems. PUFatt [41] uses physically un-
clonable functions combined with remote attestation to detect
impersonation attacks. Armknecht et al. proposed a security
framework for the analysis and design of software attestation
schemes [15]. Several works also explored hardware-based
remote attestation approaches for establishing a dynamic root
of trust for an untrusted platform [21,31,53]. While the above-
mentioned static approaches provide the ability to verify the
code integrity of an untrusted platform, they can not detect
dynamic control-flow hijacking attacks.

Attestation of control-flow. In addition to C-FLAT, OAT,
and Blast, several other control-flow attestation approaches
have been proposed. DIAT [8] and ARI [62] attempt to en-
hance the control flow attestation through modularization of
the software components based on criticality, monitoring, and
attesting to the module’s control or data flow. While they
enhance performance, they leave sophisticated control-flow
attacks undetected. ReCFA [68] and ScaRR [59] propose
coarse-grained methods to reduce the number of recorded
control events through program analysis, including call-site
filtering, control-flow event folding, and checkpoint separa-
tion based on subpaths. ReCFA utilizes hardware memory
protection a feature for critical data structures and userspace
kernel trapping, which is rarely present on embedded sys-
tems. ZEKRA [27] proposed a cryptographical method to
securely delegate the execution path attestation computation
to a dedicated third party.

Attestation through specialized hardware. VRASED em-
ploys modified hardware for monitoring alongside software
measurements to enable verification of program execution
integrity [50]. SANCUS utilizes customized hardware for
static attestation [49]. LiteHAX [28], Tiny-CFA [51], and
LO-FAT [29] are other approaches to control-flow attestation
through specialized hardware, thus unsuitable for commodity
devices. IDA [12] and ISC-FLAT [48] leverage specialized
hardware components to monitor various aspects such as pro-

gram counters, IRQs, memory addresses, and DMA writes, fa-
cilitating interrupt-aware attestation. In response to the TOC-
TOU challenge inherent in these frameworks, RATA has de-
veloped specialized hardware aimed at reducing the time gap
between the attestation state and reporting [26]. ENOLA is
complementary to the interrupt support or TOCTOU defense
approaches and focuses on full program attestation without
hardware modification.

ARM PA hardware usage beyond authentication. Several
recent works leveraged ARM PA for return address protec-
tion with measurement chain, providing spatial and temporal
memory protection, pointer integrity, etc. As a trusted mea-
surement module on the normal state of TrustZone and digest
storage on the higher bits of the pointer itself in Cortex-A, has
led to efficient temporal and spatial memory protection in re-
cent works of PTAuth [32], PAC it up [45], and PACMem [43].
PACStack overcomes the limitation of hash collision by con-
structing a measurement chain for all return addresses in the
program [44]. ENOLA is the first work to utilize the PA feature
for control-flow attestation on embedded systems.

9 Limitations and Future Work

To reduce runtime overhead and minimize the number of
TEE switches in ENOLA, leveraging hardware trace compo-
nents, such as the micro trace buffer [13], to record instruction
traces could serve as a viable alternative to software-based
instrumentation. Furthermore, to eliminate reliance on TEE,
unprivileged load/store instructions – similar to those used
in Silhouette [69] and Kage [30] – can be employed to save
and access occurrence traces directly in the normal state. This
approach may broaden ENOLA’s applicability while reducing
TEE switches, thereby improving overall performance. De-
fense against TOCTOU attacks and interrupt support can be
enabled on top of ENOLA utilizing prior works like RATA [26]
and ISC-FLAT [48] with hardware modifications. Addition-
ally, ENOLA currently lacks multitask attestation capabilities,
such as for real-time operating system (RTOS) tasks, which
remains an area for future development.

10 Conclusion

Existing control-flow attestation (CFA) solutions face signifi-
cant challenges in handling the transmission of large amounts
of measurement and/or trace data and often suffer from the
slow performance of software-based measurement calcula-
tions. These limitations restrict their applicability to small pro-
grams or code snippets on high-performance devices. In this
paper, we introduced ENOLA, a novel CFA solution designed
specifically for embedded systems. ENOLA incorporates a
novel authenticator with linear space complexity relative to
the number of basic blocks and leverages hardware-assisted
message authentication code capabilities for efficient mea-

13

surement computation. It also employs a trusted execution
environment and reserves general-purpose registers to miti-
gate memory corruption attacks.

Acknowledgment

This material is based upon work supported in part by Na-
tional Science Foundation (NSF) grants (2237238, 2329704,
2512972, 2508320, and 2422242). Any opinions, findings,
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of United States Government or any agency thereof.

14

References

[1] ARM FPGA Images for MPS3 and MPS2+ development
boards. https://developer.arm.com/downloads/
-/download-fpga-images.

[2] Arm MPS3 FPGA Prototyping Board. https://www.
arm.com/products/development-tools/develop
ment-boards/mps3.

[3] ARMv8-M Security Extensions: Requirements on De-
velopment Tools - Engineering Specification. https:
//developer.arm.com/documentation/ecm03598
18/latest/.

[4] Armv8.1-M Pointer Authentication and Branch Target
Identification Extension. https://community.arm.
com/developer/ip-products/processors/b/pro
cessors-ip-blog/posts/armv8-1-m-pointer-a
uthentication-and-branch-target-identific
ation-extension.

[5] Embench: A Modern Embedded Benchmark Suite. ht
tps://www.embench.org/.

[6] Qualcomm. Pointer authentication on ARMv8.3. http
s://www.qualcomm.com/media/documents/files
/whitepaper-pointer-authentication-on-arm
v8-3.pdf, 2017.

[7] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg,
Thomas Nyman, Andrew Paverd, Ahmad-Reza Sadeghi,
and Gene Tsudik. C-FLAT: control-flow attestation for
embedded systems software. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[8] Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad
Ibrahim, Ahmad-Reza Sadeghi, and Matthias Schunter.
Diat: Data integrity attestation for resilient collaboration
of autonomous systems. In NDSS, 2019.

[9] Naif Saleh Almakhdhub, Abraham A Clements, Saurabh
Bagchi, and Mathias Payer. µRAI: Securing Embedded
Systems with Return Address Integrity. In Network and
Distributed Systems Security (NDSS) Symposium, 2020.

[10] Mahmoud Ammar, Adam Caulfield, and Ivan
De Oliveira Nunes. Sok: Integrity, attestation, and
auditing of program execution. In 2025 IEEE Sympo-
sium on Security and Privacy (SP), pages 77–77. IEEE
Computer Society, 2024.

[11] Angr. https://angr.io/.

[12] Fatemeh Arkannezhad, Justin Feng, and Nader Sehat-
bakhsh. Ida: Hybrid attestation with support for inter-
rupts and toctou. 2024.

[13] ARM. Armv8-m architecture reference manual. https:
//developer.arm.com/documentation/ddi0553/
bm/. Online; accessed 25 March 2024.

[14] ARM. LLVM-embedded-toolchain-for-Arm. https:
//github.com/ARM-software/LLVM-embedded-t
oolchain-for-Arm.

[15] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen
Schulz, and Christian Wachsmann. A security frame-
work for the analysis and design of software attestation.
In ACM Conference on Computer and Communications
security (CCS), 2013.

[16] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O’Hearn, and Christian Winnerlein. BLAKE2 - fast
secure hashing. https://www.blake2.net/, 2017.

[17] Roberto Avanzi, Subhadeep Banik, Andrey Bogdanov,
Orr Dunkelman, Senyang Huang, and Francesco Regaz-
zoni. Qameleon v. 1.0. A Submission to the NIST
Lightweight Cryptography Standardization Process,
2019.

[18] Avanzi, Roberto. The QARMA block cipher family.
Almost MDS matrices over rings with zero divisors,
nearly symmetric even-mansour constructions with non-
involutory central rounds, and search heuristics for low-
latency s-boxes. Transactions on Symmetric Cryptology
(ToSC), 2017.

[19] Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. Static
detection of unsafe dma accesses in device drivers. In
USENIX Security Symposium, 2021.

[20] Thomas Ball and James R Larus. Efficient path profil-
ing. In Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 1996.

[21] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza
Sadeghi, Christian Wachsmann, and Patrick Koeberl.
TyTAN: Tiny trust anchor for tiny devices. In Annual
Design Automation Conference (DAC), 2015.

[22] Nicholas Carlini, Antonio Barresi, Mathias Payer, David
Wagner, and Thomas R Gross. Control-flow bend-
ing: On the effectiveness of control-flow integrity. In
USENIX Security Symposium, 2015.

[23] Abraham A Clements, Naif Saleh Almakhdhub,
Khaled S Saab, Prashast Srivastava, Jinkyu Koo,
Saurabh Bagchi, and Mathias Payer. Protecting bare-
metal embedded systems with privilege overlays. In
IEEE Symposium on Security and Privacy (S&P), 2017.

[24] Tobias Cloosters, David Paaßen, Jianqiang Wang, Ous-
sama Draissi, Patrick Jauernig, Emmanuel Stapf, Lu-
cas Davi, and Ahmad-Reza Sadeghi. Riscyrop: Auto-
mated return-oriented programming attacks on risc-v

15

https://developer.arm.com/downloads/-/download-fpga-images
https://developer.arm.com/downloads/-/download-fpga-images
https://www.arm.com/products/development-tools/development-boards/mps3
https://www.arm.com/products/development-tools/development-boards/mps3
https://www.arm.com/products/development-tools/development-boards/mps3
https://developer.arm.com/documentation/ecm0359818/latest/
https://developer.arm.com/documentation/ecm0359818/latest/
https://developer.arm.com/documentation/ecm0359818/latest/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://www.embench.org/
https://www.embench.org/
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://angr.io/
https://developer.arm.com/documentation/ddi0553/bm/
https://developer.arm.com/documentation/ddi0553/bm/
https://developer.arm.com/documentation/ddi0553/bm/
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://www.blake2.net/

and arm64. In International Symposium on Research in
Attacks, Intrusions and Defenses(RAID), 2022.

[25] Mauro Conti, Stephen Crane, Lucas Davi, Michael
Franz, Per Larsen, Marco Negro, Christopher Liebchen,
Mohaned Qunaibit, and Ahmad-Reza Sadeghi. Losing
control: On the effectiveness of control-flow integrity
under stack attacks. In ACM Conference on Computer
and Communications Security (CCS), 2015.

[26] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Nor-
rathep Rattanavipanon, and Gene Tsudik. On the toctou
problem in remote attestation. In ACM Conference on
Computer and Communications Security (CCS), 2021.

[27] Heini Bergsson Debes, Edlira Dushku, Thanassis Gi-
annetsos, and Ali Marandi. ZEKRA: Zero-Knowledge
Control-Flow Attestation. In ACM Asia Conference on
Computer and Communications Security (ASIACCS),
2023.

[28] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and
Ahmad-Reza Sadeghi. Litehax: lightweight hardware-
assisted attestation of program execution. In IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), 2018.

[29] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, An-
drew Paverd, Lucas Davi, Patrick Koeberl, N Asokan,
and Ahmad-Reza Sadeghi. Lo-fat: Low-overhead con-
trol flow attestation in hardware. In Annual Design
Automation Conference (DAC), 2017.

[30] Yufei Du, Zhuojia Shen, Komail Dharsee, Jie Zhou,
Robert J Walls, and John Criswell. Holistic Control-
Flow Protection on Real-Time Embedded Systems with
Kage. In USENIX Security Symposium. USENIX Asso-
ciation, 2022.

[31] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon,
and Daniele Perito. Smart: secure and minimal architec-
ture for (establishing dynamic) root of trust. In Network
and Distributed System Security Symposium (NDSS),
2012.

[32] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long
Lu. PTAuth: Temporal Memory Safety via Robust
Points-to Authentication. In USENIX Security Sym-
posium, 2021.

[33] FDA. Certain Medtronic MiniMed Insulin Pumps Have
Potential Cybersecurity Risks: FDA Safety Communi-
cation. https://www.fda.gov/medical-devices/s
afety-communications/certain-medtronic-min
imed-insulin-pumps-have-potential-cyberse
curity-risks-fda-safety-communication, 2019.

[34] Github. Open Syringe Pump. https://github.com
/manimino/OpenSyringePump.

[35] Github. pyelftools. https://github.com/eliben/
pyelftools.

[36] J Alex Halderman, Seth D Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A Calandrino,
Ariel J Feldman, Jacob Appelbaum, and Edward W Fel-
ten. Lest we remember: cold-boot attacks on encryption
keys. Communications of the ACM, 2009.

[37] Tomoaki Kawada, Shinya Honda, Yutaka Matsubara,
and Hiroaki Takada. Tzmcfi: Rtos-aware control-flow
integrity using trustzone for armv8-m. International
Journal of Parallel Programming, 2020.

[38] Beomseok Kim, Kiyoung Lee, Woojin Park, Jinsung
Cho, and Ben Lee. Rio: Return instruction obfuscation
for bare-metal iot devices. IEEE Access, 2023.

[39] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhong-
shu Gu, Byoungyoung Lee, Xiangyu Zhang, and
Dongyan Xu. Securing real-time microcontroller sys-
tems through customized memory view switching. In
NDSS, 2018.

[40] Sun Hyoung Kim, Cong Sun, Dongrui Zeng, and Gang
Tan. Refining indirect call targets at the binary level. In
Network and Distributed System Security Symposium
(NDSS), 2021.

[41] Joonho Kong, Farinaz Koushanfar, Praveen K Pendyala,
Ahmad-Reza Sadeghi, and Christian Wachsmann. PU-
Fatt: Embedded platform attestation based on novel
processor-based PUFs. In Annual Design Automation
Conference (DAC), 2014.

[42] Yanlin Li, Jonathan M McCune, and Adrian Perrig.
VIPER: Verifying the integrity of peripherals’ firmware.
In ACM conference on Computer and Communications
Security (CCS), 2011.

[43] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Math-
ias Payer, Ying Liu, and Chao Zhang. Pacmem: Enforc-
ing spatial and temporal memory safety via arm pointer
authentication. In ACM Conference on Computer and
Communications Security (CCS), 2022.

[44] Hans Liljestrand, Thomas Nyman, Lachlan J Gunn, Jan-
Erik Ekberg, and N Asokan. PACStack: an Authen-
ticated Call Stack. In USENIX Security Symposium,
2021.

[45] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N Asokan. PAC
it up: Towards pointer integrity using ARM pointer au-
thentication. In USENIX Security Symposium, 2019.

[46] Kangjie Lu. Practical program modularization with
type-based dependence analysis. In IEEE Symposium
on Security and Privacy (S&P), 2023.

16

https://www.fda.gov/medical-devices/safety-communications/certain-medtronic-minimed-insulin-pumps-have-potential-cybersecurity-risks-fda-safety-communication
https://www.fda.gov/medical-devices/safety-communications/certain-medtronic-minimed-insulin-pumps-have-potential-cybersecurity-risks-fda-safety-communication
https://www.fda.gov/medical-devices/safety-communications/certain-medtronic-minimed-insulin-pumps-have-potential-cybersecurity-risks-fda-safety-communication
https://www.fda.gov/medical-devices/safety-communications/certain-medtronic-minimed-insulin-pumps-have-potential-cybersecurity-risks-fda-safety-communication
https://github.com/manimino/OpenSyringePump
https://github.com/manimino/OpenSyringePump
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools

[47] Kangjie Lu and Hong Hu. Where does it go? refining
indirect-call targets with multi-layer type analysis. In
ACM Conference on Computer and Communications
Security (CCS), 2019.

[48] Antonio Joia Neto and Ivan De Oliveira Nunes. Isc-
flat: On the conflict between control flow attestation
and real-time operations. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2023.

[49] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul
Strackx, Anthony Van Herrewege, Christophe Huygens,
Bart Preneel, Ingrid Verbauwhede, and Frank Piessens.
Sancus: Low-cost trustworthy extensible networked de-
vices with a zero-software trusted computing base. In
USENIX Security Symposium, 2013.

[50] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep
Rattanavipanon, Michael Steiner, and Gene Tsudik.
VRASED: A verified hardware/software co-design for
remote attestation. In USENIX Security Symposium,
2019.

[51] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and
Gene Tsudik. Tiny-cfa: Minimalistic control-flow at-
testation using verified proofs of execution. In Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2021.

[52] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and
N Asokan. CFI CaRE: Hardware-supported call and
return enforcement for commercial microcontrollers. In
International Symposium on Research in Attacks, Intru-
sions, and Defenses (RAID), 2017.

[53] Bryan Parno, Jonathan M McCune, and Adrian Perrig.
Bootstrapping trust in commodity computers. In IEEE
Symposium on Security and Privacy (S&P, 2010.

[54] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig,
Leendert Van Doorn, and Pradeep Khosla. Pioneer:
verifying code integrity and enforcing untampered code
execution on legacy systems. In ACM Symposium on
Operating Systems Principles, 2005.

[55] Arvind Seshadri, Adrian Perrig, Leendert van Doorn,
and Pradeep Khosla. Using software-based attestation
for verifying embedded systems in cars. In Embedded
security in cars workshop (ESCCAR), 2004.

[56] Ioannis Stellios, Panayiotis Kotzanikolaou, Mihalis
Psarakis, Cristina Alcaraz, and Javier Lopez. A sur-
vey of iot-enabled cyberattacks: Assessing attack paths
to critical infrastructures and services. IEEE Communi-
cations Surveys & Tutorials, 2018.

[57] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha.
Oat: Attesting operation integrity of embedded devices.

In IEEE Symposium on Security and Privacy (S&P),
2020.

[58] Xi Tan and Ziming Zhao. SHERLOC: Secure and Holis-
tic Control-Flow Violation Detection on Embedded Sys-
tems. In ACM Conference on Computer and Communi-
cations Security (CCS), 2023.

[59] Flavio Toffalini, Eleonora Losiouk, Andrea Biondo,
Jianying Zhou, and Mauro Conti. Scarr: Scalable
runtime remote attestation for complex systems. In
Research in Attacks, Intrusions and Defenses (RAID),
2019.

[60] Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient software-based fault isola-
tion. In ACM Symposium on Operating Systems Princi-
ples (SOSP), 1993.

[61] Robert J Walls, Nicholas F Brown, Thomas Le Baron,
Craig A Shue, Hamed Okhravi, and Bryan C Ward.
Control-flow integrity for real-time embedded systems.
In 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[62] Jinwen Wang, Yujie Wang, Ao Li, Yang Xiao, Ruide
Zhang, Wenjing Lou, Y Thomas Hou, and Ning Zhang.
ARI: Attestation of Real-time Mission Execution In-
tegrity. 2023.

[63] Yujie Wang, Cailani Lemieux Mack, Xi Tan, Ning
Zhang, Ziming Zhao, Sanjoy Baruah, and Bryan C.
Ward. InsectACIDE: Debugger-Based Holistic Asyn-
chronous CFI for Embedded System. In IEEE Real-
Time and Embedded Technology and Applications Sym-
posium, 2024.

[64] wolfSSL. wolfSSL. https://www.wolfssl.com/.

[65] Nikita Yadav and Vinod Ganapathy. Whole-program
control-flow path attestation. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
2023.

[66] Nanzi Yang, Wenbo Shen, Jinku Li, Yutian Yang,
Kangjie Lu, Jietao Xiao, Tianyu Zhou, Chenggang Qin,
Wang Yu, Jianfeng Ma, et al. Demons in the shared
kernel: Abstract resource attacks against os-level virtu-
alization. In ACM SIGSAC Conference on Computer
and Communications Security(CCS), 2021.

[67] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim,
and Taesoo Kim. In-kernel control-flow integrity on
commodity oses using arm pointer authentication. In
USENIX Security Symposium, 2022.

[68] Yumei Zhang, Xinzhi Liu, Cong Sun, Dongrui Zeng,
Gang Tan, Xiao Kan, and Siqi Ma. ReCFA: resilient

17

https://www.wolfssl.com/

control-flow attestation. In Annual Computer Security
Applications Conference (ACSAC), 2021.

[69] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John
Criswell, and Robert J Walls. Silhouette: Efficient pro-
tected shadow stacks for embedded systems. In USENIX
Security Symposium, 2020.

A ARMv8.1-M Pointer Authentication

Table 2 represents the new instructions for ARMv8.1 pointer
authentication (PA) security extension. These PA instructions
can generate and verify a keyed tweakable Pointer Authen-
tication Code (PAC) for a pointer or data with the QARMA
block cipher [18]. The resulting 32-bit PAC is stored in a
general-purpose register. For example, the pac instruction
signs the value in lr using sp as the tweak/- modifier and the
key of the current state and privilege level and stores the result
in r12. With the pacg instruction, the software can specify
which registers to use. In the case of authentication failure, the
authentication instructions, e.g., aut, generate an INVSTATE
UsageFault.

PA Instructions Usage

pac
Sign lr using sp as the modifier and store
the resulting PAC in r12

aut
Authenticate lr using sp as the modifier
and validate with the PAC in r12

pacg rd, rn, rm
Sign a general-purpose register rn using
rm as the modifier and store the PAC in rd

autg rd, rn, rm
Authenticate a general-purpose register rn using
rm as modifier and validate with the PAC in rd

bxaut rd, rn, rm
Authenticate rn using rm as the modifier
and rd as the PAC. If validated, branch to rn.

Table 2: The ARMv8.1-M PA extension instructions. ENOLA
utilizes pacg for measurement calculations.

Table 3 displays the four 128-bit PA key registers, indicat-
ing their usage and configurable settings. Each 128-bit PA
key consists of four 32-bit registers, which are not memory
mapped. For example, pac_key_u_ns register is made up of
pac_key_u_ns_0, pac_key_u_ns_1, pac_key_u_ns_2, and
pac_key_u_ns_3 registers. When a pacg instruction is ex-
ecuted at the unprivileged level and non-secure state, the
pac_key_u_ns register is implicitly used as the key to com-
pute the PAC. As denoted in the table, this PA key register
can only be configured by software in the secure state and set
individually for each 32-bit internal register using privileged
msr (move-to-system-register) instructions.

PA Key Registers Used at Configurable at
pac_key_u_ns U-NS P-NS and P-S
pac_key_p_ns P-NS P-NS and P-S
pac_key_u_s U-S P-S
pac_key_p_s P-S P-S

U-NS: unprivileged non-secure, P-NS: privileged non-
secure, U-S: unprivileged secure, P-S: privileged secure.

Table 3: The 128-bit PA key registers (not memory mapped)
and their usage and configuration settings.

B Trampoline and ENOLA Attestation Engine
functions

Listing 6 illustrates an ENOLA trampoline cross-state call that
requires two additional instructions in the non-secure callable
state compared to a normal function call. While Listing 7
presents first instruction in the secure state trampoline of
attestation engine to retentive the branch destination vi.s to
r0 general purpose register.

;Non-secure callable memory region
report_direct:
0x101FFE00 sg
0x101FFE04 b report_direct <0x100031D4>

Listing 6: Non-secure callable region trampoline for reporting
direct branches

;Secure memory region
report_direct:
0x100031D4 mov r0, lr
0x100031D8 ...

Listing 7: ENOLA attestation engine retrieving attested pro-
gram’s direct branch destinations

C Instrumentation for Leaf function return

For leaf functions, the return address is stored in the lr regis-
ter, allowing straightforward instrumentation to construct the
backward edge measurement chain Mb with a single instruc-
tion: "pacg r11, lr, r11", as shown in Listing 8. Here,
the leaf and non-leaf function returns are chained together to
construct Mb on the reserved r11 register.

D Verification Algorithm Details

The ENOLA verifier uses the backtracking algorithm listed in
Algorithm 1 to verify the legitimacy of the attested control
path. The algorithm takes the following inputs: the attesta-
tion report R and the control-flow graph GP of the attested
program, incorporating the entry basic block (Pentry) and the
potential exit points (Pexits).

18

1 epilogue:
2 add sp, #0x8
3 pacg r11, lr, r11 ;update measurement Mb
4 bx lr

Listing 8: Instrumentation example: leaf function return

The algorithm initially confirms the validity of the attestation
report signature SigKa(Auth,c) (Line 2-3) and checks for any
illegal indirect branch targets (Line 4-5). Upon successful
verification, the algorithm abstractly executes the program
based on its CFG and verifies the forward and backward
measurements. The abstract execution starts at Pentry and
recursively executes various branches. The abstract execution
initializes an empty simulated call stack (S) to keep track of
return addresses.

The algorithm executes one of four actions based on the type
of the last instruction at address vc.e within the current basic
block (vc): (1) if the last instruction in vc signifies a program
exit, this marks the end of P . Here, the computed measure-
ments are compared with the received values in Auth (Line
12); (2) for a function call at vc.e, the verifier pushes the ad-
dress of the subsequent instruction onto the simulated function
call stack S and proceeds to abstractly execute the call target
(Line 14-15); (3) at vc.e, in the case of a conditional branch,
the algorithm explores all potential paths emanating from the
current basic block (Line 17). And the occurrence count for
each target in TO is checked. If the occurrence count is greater
than zero, the verifier decreases this count by one, computes a
measurement (M′f), and transitions abstract execution to that
target. An invalid path is identified if no such targets exist in
TO , prompting the recursive function to backtrack; (4) when
vc.e is a return instruction, the backward edge measurement
(M′b) is updated, and abstract execution moves to the return
target from the simulated function call stack (Line 23-24).

E ENOLA micro-level runtime overhead

CPU cycles Time (µs)
Init. PA key registers 112 4.48

Instrumented direct branch 67 2.79
Instrumented loop body 71 2.84
Instrumented loop exit 69 2.76

Instrumented indirect call 64 2.56

Table 4: ENOLA micro-level runtime overhead

Table 4 provides the micro-level runtime overheads for vari-
ous ENOLA operations. The ENOLA attestation engine initial-
izes the PA key in approximately 4.8 µs. Runtime overheads
for instrumentation at specific sites are as follows: 2.79 µs
for direct branches, 2.84 µs for loop entries, 2.76 µs for loop
exits, and 2.56 µs for indirect calls.

Algorithm 1: ENOLA verifier
Input: GP = (V,E)
R = (Auth,SigKa(Auth,c)), where
Auth = (TO ,⟨M f ,Mb⟩) and
TO = {⟨vi.s,#vi⟩|i = 0, ..., |V |−1∧#vi ̸= 0},{ti|ti /∈⋃|V |−1

i=0 vi.s}
Output: The legitimacy of the control-flow path

1 Procedure Verify(R):
2 if SigKa(Auth,c) is not valid then
3 return False;

4 if |{ti}| ̸= 0 then
5 return False;

6 return AbstractExec(Pentry,TO ,0,0,∅);

7 Procedure AbstractExec(v,T,M′f ,M
′
b,S):

8 vc← v; M′′f ←M′f ; M′′b ←M′b;
9 T ′← T ; S′← S;

10 if vc.e ∈ Pexit then
11 M′′f ← HKm(vc.s,M′f);
12 return M f == M′′f ∧Mb == M′′b ;

13 else if vc.e is a function call then
14 S′.push(vc.e+1);
15 return AbstractExec(evc .d,T

′,M′′f ,M
′′
b ,S
′);

16 else if vc.e is not a function return then
17 foreach di ∈ ∪evc .d do
18 if T ′.#di > 0 then
19 T ′.#di← T ′.#di−1;
20 M′′f = HKm(di,M′f);
21 return AbstractExec(di,T ′,M′′f ,M

′′
b ,S
′);

22 else if vc.e is a function return then
23 M′′b = HKm(S

′.top(),M′b);
24 return AbstractExec(S′.pop(),T ′,M′′f ,M

′′
b ,S
′);

25 return False ;

F Evaluated application’s CFG and ENOLA
instrumentation sites

Table 5 summarizes the Lines of Code (LoC), CFG statis-
tics, and ENOLA instrumentation sites for the Embench and
wolfSSL applications at both O2 and Oz optimization lev-
els. Unlike prior control-flow attestation studies, ENOLA was
evaluated on comparatively larger applications, notably the
wolfSSL applications, using real-world compiler optimization
levels.

G Case Study on the crc32 Embench Applica-
tion

We conducted a case study on the Embench application per-
forming a Cyclic Redundancy Check named crc32 to illus-

19

Application LoC
CFG Statistics ENOLA Instrumentation Sites

Nodes Edges Direct Indirect Returns
O2 Oz O2 Oz O2 Oz O2 Oz O2 Oz

Embench Applications
aha-mont64 162 875 898 1,399 1,422 27 8 0 10 9 9
crc32 291 385 414 289 303 25 14 0 0 17 13
cubic 254 431 474 516 533 11 21 0 11 6 6
edn 359 401 415 401 331 47 28 0 0 13 13
huffbench 309 653 481 793 455 230 71 0 0 16 15
matmult-int 175 369 406 288 317 23 20 0 0 10 10
md5sum 153 409 415 343 330 41 25 0 0 15 15
minver 187 517 466 580 432 133 58 0 0 7 7
nbody 172 554 444 824 424 35 23 0 0 7 7
nettle-aes 1,147 440 461 412 398 73 50 0 0 14 14
nettle-sha256 422 437 435 395 377 51 30 0 0 10 10
nsichneu 2,676 1,102 1,262 1,765 2,170 769 765 0 0 6 5
st 117 856 438 1,723 404 29 13 0 0 13 12
tarfind 81 590 417 684 337 229 28 0 0 16 13
ud 95 435 403 417 324 82 28 0 0 6 6

wolfSSL Applications
AES 10,646 1,038 1,087 1,648 1,702 90 87 0 0 23 26
MD5 4,917 1,194 1,241 2,002 1,981 196 169 0 0 88 70
HMAC 6,085 1,374 1,426 24,25 23,83 294 257 0 0 108 83
RSA 27,807 5,480 3,444 9,813 6,110 3,309 1,476 0 18 272 267

Table 5: ENOLA instrumentation sites, Lines of Code (LoC)
and application’s CFG statistics.

trate the functionality of the ENOLA framework. The source
code of the program, depicted in Listing 9, reveals two main
functions: the benchmark_body parent function, which con-
tains a loop that iteratively calls crc32pseudo based on the
rpt value and the callee executes a loop 1,024 times to per-
form CRC operations.

repeat cond.

crc32 loop
cond.

crc32 loop
body

crc32 loop
exit

ret

1

2 3

conditional
unconditional
sequential

app
body

vi.s entry in

Figure 9: Simplified CFG of crc32 Embench application (Oz)

For the Oz optimization level, the ENOLA compiler generates
and instruments two basic blocks for loop body branches and
one for loop exit branch, as highlighted in Listing 9. Figure 9
presents a simplified CFG of the program, where the entry
address of highlighted nodes or basic blocks are designated
as vi.s. Specifically, edges marked as 1 and 2 represent loop

1 DWORD crc32pseudo () {
2 int i; register DWORD oldcrc32;
3 oldcrc32 = 0xFFFFFFFF;
4 for (i = 0; i < 1024; ++i) {//(2)crc loop-body

branch↪→

5 oldcrc32 = UPDC32 (rand_beebs (), oldcrc32);
6 }
7 return ~oldcrc32;//(3)crc loop-exit branch
8 }
9

10 static int __attribute__ ((noinline))
11 benchmark_body (int rpt) {
12 int i; DWORD r;
13 for (i = 0; i < rpt; i++) {//(1)App loop-body

branch↪→

14 srand_beebs (0);
15 r = crc32pseudo ();
16 }
17 return (int) (r % 32768); //App sequential

return↪→

18 }

Listing 9: Source code of crc32 Embench application

body control flow changes, while 3 denotes the loop exit
edge in the crc32pseudo function. Despite the presence of
303 edges in the CFG, only these three edges are executed
at runtime that meet the criteria to be included in the trace.
Consequently, only the vi.s of the three highlighted basic
blocks are included in the occurrence trace TO , resulting in a
generated size of 24 bytes. Table 6 illustrates the contents of
the generated TO when the application is executed with the
ENOLA framework. The Auth consists of TO combined with
M f and Mb measurements, which provide enough evidence
for V to validate P’s execution control-flow of the program P
using ENOLA verification Algorithm 1.

Address (vi.s) Occurrence Count (#vi)
0x10000495 4,250
0x10000441 4,352,000
0x10000465 4,250

Table 6: TO content of crc32 with ENOLA

H Instruction Operands in TO

Table 7 shows the instructions meeting the criteria for ENOLA
target basic block instrumentation and their corresponding
elements or entries in TO . The backward edges are enclosed
in the measurement only, thus not included in TO .

Instruction Type Instruction TO entry
Indirect Call blx rx rx
Indirect Jump bx rx rx

Conditional Jump b.{condition} #addr #addr
Conditional Jump cb.{condition} #addr #addr

Table 7: Instructions targeting ENOLA’s instrumented basic
blocks and corresponding TO entry

20

	Introduction
	Formalizing the Complexity of CFA
	Hardware Primitives on MCU
	Enola
	System and Threat Model
	Enola Trace and Measurement Schemes
	Enola Components and Workflow
	Secure Generation of TO
	Secure and Efficient Calculation of Measurements
	Backtracking Algorithm for Verification

	Security Analysis
	Implementation
	Evaluation
	Evaluation Environment
	Micro-level Performance Evaluations
	Evaluations on Syringe Pump Application
	Evaluations on Embench Applications
	Evaluations on wolfSSL Applications

	Related Work
	Limitations and Future Work
	Conclusion
	ARMv8.1-M Pointer Authentication
	Trampoline and Enola Attestation Engine functions
	Instrumentation for Leaf function return
	Verification Algorithm Details
	Enola micro-level runtime overhead
	Evaluated application's CFG and Enola instrumentation sites
	Case Study on the crc32 Embench Application
	Instruction Operands in TO

